首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合成一种Brønsted酸性离子液体[BPY]HSO4,采用红外光谱和核磁共振对其进行表征。以[BPY]HSO4为催化剂,对FCC汽油进行烷基化脱硫,考察反应温度、反应时间和剂油质量比对脱硫效果的影响及脱硫前后FCC汽油性质的变化,并对[BPY]HSO4进行了再生。结果表明,在反应温度为65 ℃、反应时间为90 min和剂油质量比为0.09的条件下,FCC汽油的硫含量从580.0 μg/g降至6.4 μg/g,脱硫率为98.90%,满足中国国Ⅴ车用汽油硫含量标准(<10 μg/g);脱硫前后硫分布变化表明,在[BPY]HSO4的催化作用下,前170 ℃馏分油中硫化物大部分转移到后170 ℃重馏分中,重馏分中硫化物可采用加氢方法进行脱除;PONA组成变化表明,烷基化脱硫过程对FCC汽油的烃类组成影响较小,且脱硫前后辛烷值变化不大;[BPY]HSO4经萃取再生后可循环使用。  相似文献   

2.
2‐X‐1, 2‐Difluoroalk‐1‐enylxenon(II) salts were prepared by the reaction of XeF2 with XCF=CFBF2 (X = F, trans‐H, cis‐Cl, trans‐Cl, cis‐CF3, cis‐C2F5) but no organoxenon(II) compounds were obtained when the trans‐isomers of boranes, trans‐XCF=CFBF2 (X = CF3, C4F9, C4H9, Et3Si), were used under similar conditions.  相似文献   

3.
The single step reactions of N,N′‐ substituted/‐unsubstituted barbituric acids with various alkyl dihalides under phase transfer catalytic conditions using DMF‐K2CO3 (base), TBAHSO4 (catalyst) provide spirobarbituric acids in moderate to high yields. Irrespective of the existence of C5‐monoalkylated compounds in the enolic form (confirmed by the isolation of some of its analogues), the second alkylation predominantly takes place at C5. The underlying mechanism for the reaction is discussed. The 5,7‐dimethyl‐5,7‐diaza‐spiro[2.5]octane‐4,6,8‐trione undergoes ring opening with NaCN, PhSH, HS(CH2)2OH and Br2 to provide 5‐monoalkylated barbiturates which are otherwise difficult to prepare by the usual alkylation of barbituric acids.  相似文献   

4.
The crystal structures of four cyclo­alkane­spiro‐4′‐imidazolidine‐2′,5′‐dithiones, namely cyclo­pentane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.4]­nonane‐2,4‐dithione}, C7H10N2S2, cyclo­hexane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.5]decane‐2,4‐dithione}, C8H12N2S2, cyclo­heptane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.6]undecane‐2,4‐dithione}, C9H14N2S2, and cyclo­octane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐di­aza­spiro­[4.7]dodecane‐2,4‐dithione}, C10H16N2S2, have been determined. The three‐dimensional packing in all of the structures is based on closely similar chains, in which hydantoin moieties are linked through N—H⋯S hydrogen bonding. The size of the cyclo­alkane moiety influences the degree of its deformation. In the cyclo­octane compound, the cyclo­octane ring assumes both boat–chair and boat–boat conformations.  相似文献   

5.
Cyclodipepflde (3S, 6S )-bis (phenylmethyl) piperazlne-2,5-dione was prelmred in high yield by heating phenylalanine methyl ester in toluene under reflux. The reduction of this cydodipeptide with sodium NaBH4-BF3 in DIME gave the (2S ,SS)-bis(phenyl-methyl)plperazine, which, on heating with ethylene bromide and triethyiamine, afforded the title compounds. This methodwas proved to be generally applicable to the synthesis of C2-symmetric 2, 5-disubsiituted=l, 4-diazabicyclo [ 2.2.2 ] octanefrom the corresponding natural or unnatural amino acid esters.  相似文献   

6.
《化学:亚洲杂志》2017,12(4):465-469
A green approach for the generation of β‐keto sulfones through a reaction of aryldiazonium tetrafluoroborates and sulfur dioxide with silyl enol ether under catalyst‐ and additive‐free conditions has been realized. This reaction proceeds efficiently at room temperature and goes to completion in half an hour. During the reaction process, aryldiazonium tetrafluoroborate is treated with DABCO ⋅ (SO2)2 (DABCO=1,4‐diazabicyclo[2.2.2]octane) to provide a sulfonyl radical as the key intermediate, which then initiates the transformation. Oxidants or metal catalysts are avoided, and the presence of DABCO also plays an important role in the reaction.  相似文献   

7.
An eco‐friendly method has been developed for the synthesis of 2‐amino‐4‐(9H‐carbazole‐3‐yl)thiophene‐3‐carbonitriles from preliminary carbazole ( 1 ) through an intermediate of 2‐(1‐(9H‐carbazole‐3‐yl)ethylidene)malononitriles using the Knoevenagel condensation followed by the Gewald reaction. On the other hand, the target compounds could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of 1‐(9H‐carbazole‐3‐yl)ethanone ( 3 ), malononitrile, and elemental sulfur. The merits of this preparation are mild reaction conditions. The Gewald reaction is executed with inorganic base NaHCO3 (H2O) in tetrahydrofuran, easy work‐up procedure with good yields.  相似文献   

8.
In the crystal structure of 6‐phenyl‐3‐thioxo‐2,3,4,5‐tetrahydro‐1,2,4‐triazin‐5‐one, C9H7N3OS, (I), the 1,2,4‐triazine moieties are connected by face‐to‐face contacts through two kinds of double hydrogen bonds (N—H...O and N—H...S), which form planar ribbons along the a axis. The ribbons are crosslinked through C—H...π interactions between the phenyl rings. The molecular structures of two regioisomeric compounds, namely 6‐phenyl‐2,3‐dihydro‐7H‐1,3‐thiazolo[3,2‐b][1,2,4]triazin‐7‐one, C11H9N3OS, (II), and 3‐phenyl‐6,7‐dihydro‐4H‐1,3‐thiazolo[2,3‐c][1,2,4]triazin‐4‐one, C11H9N3OS, (III), which were prepared by the condensation reaction of (I) with 1,2‐dibromoethane, have been characterized by X‐ray crystallography and spectroscopic studies. The crystal structures of (II) and (III) both show two crystallographically independent molecules. While the two compounds are isomers, the unit‐cell parameters and crystal packing are quite different and (II) has a chiral crystal structure.  相似文献   

9.
The absolute configuration of the neoclerodane glycoside amarisolide, presented here as the monohydrate, C26H36O9·H2O, has been determined by association with the known configuration of the glucose moiety. Its structure was established as 2β‐(O‐β‐d ‐gluco­pyran­osyl)­neocleroda‐3,13(16),14‐trien‐15,16‐epoxy‐18,19‐olide. Extensive hydrogen bonding among the hydroxyl groups of the sugar moiety forms layers which are interconnected by water mol­ecules.  相似文献   

10.
Two hexacyanoferrate‐based ionic liquids, [C4Py]3Fe(CN)6 and [C16Py]3Fe(CN)6, were synthesized and characterized using Fourier transform infrared and mass spectroscopies and CHN analysis. They were employed as Fenton‐like catalysts in extraction and catalytic oxidative desulfurization of model oil with dibenzothiophene (DBT), benzothiophene (BT), 4,6‐dimethyldibenzothiophene (4,6‐DMDBT), 4‐methyldibenzothiophene (4‐MDBT) and 3‐methylbenzothiophene (3‐MBT) as substrates. Various polar solvents, such as ionic liquids, water and organic solvents, were applied to choose a suitable extractant. The results showed the removal of DBT reached 97.1% with [C4Py]3Fe(CN)6 as a catalyst and 1‐n‐octyl‐3‐methylimidazolium hexafluorophosphate ([C8mim]PF6) as an extractant under optimal conditions. The activity of sulfur removal followed the order DBT > 3‐MBT > BT > 4‐MDBT >4,6‐DMDBT. The effect of water content on sulfur removal was investigated by adding various concentrations of H2O2. It was found that excess water had a positive effect on sulfur removal but the catalysts were less sensitive than [FeCl4?]‐based catalysts to water. The mechanism was studied using electron spin‐resonance spectroscopy and gas chromatography–mass spectrometry. O2?? may be the active oxygen species in the catalytic oxidative desulfurization process and the oxidation products of various sulfur compounds were the corresponding sulfoxides and sulfones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Solvothermal reactions of HgI2, 4,4′‐vinylenedipyridine, and HI in alcoholic solution (methanol, ethanol, or pentanol) gave rise to a family of organic‐inorganic hybrid complexes, formulated as [C14H16N2][I4]2– ( 1 ), [C16H20N2][HgI4] ( 2 ), and [C22H32N2][HgI4]4 ( 3 ). Single‐crystal X‐ray diffraction reveals that all three compounds are discrete structures, including the inorganic anion [I4]2– or [HgI4]2– and an organic cation, where the resulting organic cations were generated in situ alkylation reactions of 4,4′‐vinylenedipyridine with alcohols, with cleavage of the alcoholic C–O bond followed by a one‐step in situ N‐alkylation reaction of 4,4′‐vinylenedipyridine in acidic HI solution. X‐ray powder diffraction (XRD), 1H NMR and 13C NMR, energy‐dispersive X‐ray (EDS), IR, as well as UV/Vis/NIR spectroscopy, elemental analysis, and thermogravimetric analysis (TGA) were used to characterize the complexes.  相似文献   

12.
The geometrical parameters governing the potential for the photocyclization reaction occurring in crystals of 2,3,4,5,6‐pentamethylbenzophenone, C18H20O, (I), 1,3‐diphenylbutan‐1‐one, C16H16O, (II), and 2,4,6‐triisopropyl‐4′‐methoxybenzophenone, C23H30O2, (IV), have been evaluated. Compound (IV) undergoes photocyclization but (I) and (II) do not, despite the fact that their geometrical parameters appear equally favourable for reaction. The structure of the partially reacted crystal of the photoactive compound, i.e. 2,4,6‐triisopropyl‐4′‐methoxybenzophenone–3,5‐diisopropyl‐7‐(4‐methoxyphenyl)‐8,8‐dimethylbicyclo[4.2.0]octa‐1,3,5‐trien‐7‐ol (9/1), 0.90C23H30O2·0.10C23H30O2, (III), was also determined, providing structural evidence for the reactivity of the compound. It has been found that the carbonyl group of the photoactive compound reacts with one of the two o‐isopropyl groups. The study has shown that the intramolecular geometrical parameters are not the only factors influencing the reactivity of compounds in crystals.  相似文献   

13.
N‐t‐Butylacetamidines 1 on heating with methyl vinyl ketone, acrolein or crotonaldehyde gave the 2,3‐dihydropyridine derivatives 4,5 or 6 via N‐alkylation of the acetamidines 1 . Reaction of amidines 1 with phenyl 1‐propenyl ketone, benzalacetone or chalcone gave 3,4‐dihydropyridine derivatives 8, 9 or 10 . These were obtained by C‐alkylation, achieved by Michael addition of the acetamidines 1 as their N,C‐tautomers ene‐1,1‐diamines 1 ′ to α,β‐unsaturated carbonyl compounds, and subsequent cyclodehydration of adducts. Reaction of 1 with ethyl 3‐benzoylacrylate gave 3,4‐dihydropyrrol‐2‐one derivatives 13 .  相似文献   

14.
Substitution of the dicarbaundecaborate anion nido‐7,8‐C2B9H12? ( 1 ) by precise hydride abstraction followed by nucleophilic attack usually leads to symmetric products 10‐R‐nido‐7,8‐C2B9H11. However, thioacetamide (MeC(S)NH2) as nucleophile and acetone/AlCl3 as hydride abstractor gave asymmetric 9‐[MeC(NHiPr)S]‐nido‐7,8‐C2B9H11 ( 2 ), whereas N,N‐dimethylthioacetamide (MeC(S)NMe2) gave the expected symmetric 10‐[MeC(NMe2)S]‐nido‐7,8‐C2B9H11 ( 4 ). For the formation of 2 , acetone and thioacetamide are assumed to give the intermediate MeC(S)N(CMe2) ( 3 ), which then attacks 1 with formation of 2 . Similarly, reaction of acetyliminium chloride [MeC(O)NH(CPh2)]Cl ( 5 ) with 1 in THF gave a mixture of 9‐ and 10‐substituted [MeC(NHCHPh2)O]‐nido‐7,8‐C2B9H11 ( 6 and 7 , respectively). These reactions are the first examples in which compounds (here heterodienes) that unite the functionalities of both hydride acceptor and nucleophilic site react with 1 in a bimolecular fashion. Furthermore, the analogous reaction of 1 and 5 (in an equilibrium mixture with acetyl chloride and benzophenone imine) in MeCN afforded 10‐[MeC(NCPh2)NH]‐nido‐7,8‐C2B9H11 ( 8 ) and MeC(O)NHCHPh2 ( 9 ).  相似文献   

15.
Despite significant efforts towards the direct conversion of syngas into liquid fuels, the selectivity remains a challenge, particularly with regard to high‐quality gasoline with a high octane number and a low content of aromatic compounds. Herein, we show that zeolites with 1D ten‐membered‐ring (10‐MR) channel structures such as SAPO‐11 and ZSM‐22 in combination with zinc‐ and manganese‐based metal oxides (ZnaMnbOx) enable the selective synthesis of gasoline‐range hydrocarbons C5–C11 directly from syngas. The gasoline selectivity reached 76.7 % among hydrocarbons, with only 2.3 % CH4 at 20.3 % CO conversion. The ratio of isoparaffins to n‐paraffins was as high as 15, and the research octane number was estimated to be 92. Furthermore, the content of aromatic compounds in the gasoline was as low as 16 %. The composition and structure of ZnaMnbOx play an important role in determining the overall activity. This process constitutes a potential technology for the one‐step synthesis of environmentally friendly gasoline with a high octane number from a variety of carbon resources via syngas.  相似文献   

16.
Sodium salt of 4‐hydroxy‐6‐methyl‐2‐phenylpyrimidine‐5‐carbonitrile ( 3 ) was subjected to alkylation with different a‐halo compounds, where the corresponding O‐alkylated products 4a‐g were obtained. Ring closure of the O‐alkylated product 4a‐c performed using sodium ethoxide in refluxing ethanol afforded furo[2,3‐d]pyrimidines 5a‐c The latter compounds on reaction with a variety of reagents gave other new furopyrimidines as well as a number of furodipyrimidines.  相似文献   

17.
The title compounds ( 3 , 8 , 9 and 10 ) were efficiently synthesized, and their substitution reactions with various nucleophiles were carried out. The effects of leaving group, sulfur‐substituent, solvent, reaction temperature, and the nature of the nucleophiles on the reactivity and SN2/SN2′ regioselectivity were studied and rationalized with semi‐empirical calculations.  相似文献   

18.
2, 4‐Dimethylpenta‐1, 3‐diene and 2, 4‐Dimethylpentadienyl Complexes of Rhodium and Iridium The complexes [(η4‐C7H12)RhCl]2 ( 1 ) (C7H12 = 2, 4‐dimethylpenta‐1, 3‐diene) and [(η4‐C7H12)2IrCl] ( 2 ) were obtained by interaction of C7H12 with [(η2‐C2H4)2RhCl]2 and [(η2‐cyclooctene)2IrCl]2, respectively. The reaction of 1 or 2 with CpTl (Cp = η5‐C5H5) yields the compounds [CpM(η4‐C7H12)] ( 3a : M = Rh; 3b : M = Ir). The hydride abstraction at the pentadiene ligand of 3a , b with Ph3CBF4 proceeds differently depending on the solvent. In acetone or THF the “half‐open” metallocenium complexes [CpM(η5‐C7H11)]BF4 ( 4a : M = Rh; 4b : M = Ir) are obtained exclusively. In dichloromethane mixtures are produced which additionally contain the species [(η5‐C7H11)M(η5‐C5H4CPh3)]BF4 ( 5a : M = Rh; 5b : M = Ir) formed by electrophilic substitution at the Cp ring, as well as the η3‐2, 4‐dimethylpentenyl compound [(η3‐C7H13)Rh{η5‐C5H3(CPh3)2}]BF4 ( 6 ). By interaction of 2, 4‐dimethylpentadienyl potassium with 1 or 2 the complexes [(η4‐C7H12)M(η5‐C7H11)] ( 7a : M = Rh; 7b : M = Ir) are generated which show dynamic behaviour in solution; however, attempts to synthesize the “open” metallocenium cations [(η5‐C7H11)2M]+ by hydride abstraction from 7a , b failed. The new compounds were characterized by elemental analysis and spectroscopically, 4b and 5a also by X‐ray structure analysis.  相似文献   

19.
The crystal structure of the title complex, [Cd(C20H25­N2­O2)­Cl], reveals a hydrogen‐bonded dimer composed of neutral molecules. The CdII center is five‐coordinated by two O atoms of the pendant arms, two nitro­gen donors of the 1,5‐di­aza­cyclo­octane ring and a chloride anion. The coordination geometry of the complex could be described as a distorted square pyramid. The 1,5‐di­aza­cyclo­octane backbone adopts a boat/chair configuration and the two phenol/phenolato groups have a dihedral angle of 101.3 (2)° between them. The coordinated phenolate and phenolic groups of inversion‐related mol­ecules form strong intermolecular O—H?O hydrogen bonds.  相似文献   

20.
Diphenyl(3‐methyl‐2‐indolyl)phosphine (C9H8NPPh2, 1 ) gives stable dimeric palladium(II) complexes that contain the phosphine in P,N‐bridging coordination mode. On treating 1 with [Pd(O2CCH3)2], the new complexes [Pd(μ‐C9H7NPPh2)(NCCH3)]2 ( 2 ) or [Pd(μ‐C9H7NPPh2)(μ‐O2CCH3)]2 ( 3 ) were isolated, depending on the solvent used, acetonitrile or toluene, respectively. Further reaction of 3 with the ammonium salt of 1 led to the substitution of one carboxylate ligand to afford [Pd(μ‐C9H7NPPh2)3(μ‐O2CCH3)] ( 4 ), in which the bimetallic unit is bonded by three C9H7NPPh2? moieties and one carboxylate group. Using this methodology, [Pd2(μ‐C6H4PPh2)2(μ‐C9H7NPPh2)(μ‐O2CCX3)] (X=H ( 7 ); X=F ( 8 )) were synthesised from the ortho‐metalated compounds [Pd(C6H4PPh2)(μ‐O2CCX3)]2 (X=H ( 5 ); X=F ( 6 )). Complexes 3 , 4 , 7 , and 8 have been found to be active in the catalytic β‐boration of α,β‐unsaturated esters and ketones under mild reaction conditions. Hindrance of the carbonyl moiety has an influence on the reaction rate, but quantitative conversion was achieved in many cases. More remarkably, when aryl bromides were added to the reaction media, complex 7 induced a highly successful consecutive β‐boration/cross‐coupling reaction with dimethyl acrylamide as the substrate (99 % conversion, 89 % isolated yield).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号