首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Driven by the significant need for characterization of the chemical speciation of arsenic in food, this work developed a method for rapid determination of four common arsenic species, namely, arsenite, arsenate, monomethyl arsenic acid, and dimethyl arsenic acid, in vegetables using microwave‐assisted extraction, followed by detection with high‐performance liquid chromatography hyphenated to inductively coupled plasma‐mass spectrometry. Initial screening results showed that microwave‐assisted extraction using 1% HNO3 exhibited the highest overall efficiencies for all arsenic species without causing significant degradation of the organic ones. With the aid of response surface methodology, the optimum conditions established for extraction of arsenic species from vegetables were: 500 mg of freeze‐dried vegetable sample, extracted by closed vessel microwave‐assisted extraction using 10 mL of 2% v/v HNO3 at 90°C for 17 min. Application of the method in the analysis of 24 market vegetable samples indicates that the extraction efficiencies for total arsenic species were in the range of 91.4–106%. Arsenite and arsenate were found to be the predominant arsenic species in the vegetables, which suggests that vegetable consumption could be an important route of inorganic arsenic exposure for the population with a heavy vegetable diet in arsenic polluted regions.  相似文献   

2.
A method of high performance liquid chromatography with a Hamilton PRP‐X100 ion‐exchange column (250 × 4.1 mm id, 10 μm) coupled to inductively coupled plasma mass spectrometry was employed to generate a full concentration–time profile of arsenic speciation after oral administration. The results exhibited good linearity and revealed that, in the pills, the average arsenic concentration was 10105.4 ± 380.7 mg/kg, and in the water extraction solution, the inorganic As(III) and As(V) concentrations were 220.1 ± 12.6 and 45.5 ± 2.3 mg/kg, respectively. No trace of monomethyl arsenic acid was detected in any of the plasma samples. We then successfully applied the established methodology to examine the pharmacokinetics of arsenic speciation. The resulting data revealed that, after oral administration in rats, the plasma concentration of each arsenic species reached Cmax shortly after initial dosing, and that the distribution and elimination of As(V) was faster than that of As(III) and dimethyl arsenic acid. Additionally, the t1/2 values of As(V), As(III), and dimethyl arsenic acid were 3.4 ± 1.6, 14.3 ± 4.0, and 19.9 ± 1.6 h, respectively. This study provides references for the determination of arsenic speciation in mineral‐containing medicines and could serve as a useful tool in measuring the true toxicity in traditional medicines that contain them.  相似文献   

3.
Ti (IV)-modified vinyl phosphate magnetic nanoparticles (Fe3O4@SiO2@KH570-PO4-Ti (IV)) was prepared for simultaneous extraction of multiple arsenic species, followed by high performance liquid chromatography (HPLC)– inductively coupled plasma mass spectrometry (ICP-MS) analysis. Inorganic arsenic (iAs), dimethyl arsenic acid (DMA), monomethyl arsenic acid (MMA), p-amino phenyl arsenic acid (p-ASA), 4-hdroxyphenylarsenic acid (4-OH), phenyl arsenic acid (PAA), and 3-nitro-4-hydroxyphenylarsenic acid (ROX) were investigated as interest analytes. It was found that they were quantitatively adsorbed on Fe3O4@SiO2@KH570-PO4-Ti (IV) at pH 5, and desorbed completely with 0.1 mol/L sodium hydroxide solution. Enrichment factor of 100-fold was obtained by consuming 100 mL sample solution. Under the optimal conditions, the method combining MSPE with HPLC-ICP-MS presented a linear range of 1–5000 ng/L for seven arsenic species. The limits of detection were 0.39, 0.60, 0.23, 1.85, 0.54, 0.48, and 0.84 ng/L for DMA, MMA, p-ASA, iAs, 4-OH, PAA, ROX, with the relative standard deviations (c = 10 ng/L, n = 7) of 3.6, 3.9, 5.5, 12.4, 6.1, 5.8, 5.0, respectively. The accuracy of the method was validated by analyzing BCR 627 Tuna fish. The application potential of the method was further evaluated by chicken muscle and liver samples. No target arsenic species were detected in these samples, and good recoveries (80.6–123%) were obtained for the spiked samples at low, medium, and high concentration levels.  相似文献   

4.
Salvianolic acid A (SalA) is one of the main active constituents in Salvia miltiorrhiza (Danshen). Although the pharmacokinetics of SalA in rats after intravenous (i.v.) administration of Danshen injection has been reported, the information relevant to the metabolites of SalA in vivo is absent so far. In this study, by means of liquid chromatography with time‐of‐flight mass spectrometry (LC/TOFMS) and liquid chromatography with ion trap mass spectrometry (LC/MSn) techniques, the unknown metabolites of SalA in rat plasma after i.v. administration of the purified SalA at the dose of 20 mg/kg body weight were identified. A liquid‐liquid extraction method was established to separate the metabolites from the plasma and the chromatographic separations were performed on a Xterra MS C18 column (100 mm × 4.6 mm i.d., 3.5 µm) with acetonitrile/methanol/water/formic acid (20.5:19.5:64: 0.05, v/v/v/v) as the mobile phase at a constant flow rate of 0.2 mL/min. Based on the data obtained from the LC/TOFMS determination (the total ion chromatograms, MS spectra and extracted ion chromatograms), in combination with the characteristic fragment ions acquired from the LC/MSn determination, five metabolites were identified as SalA‐monoglucuronide, monomethyl‐SalA‐monoglucuronide, mono‐methyl‐SalA, dimethyl‐SalA and dimethyl‐SalA‐monoglucuronide, and the possible chemical structures were deduced. The results indicated that SalA might mainly undergo two metabolic pathways in vivo in rats, which were methylation and glucuronidation. The present studies have laid a solid foundation for the metabolic mechanism of SalA in vivo. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Han  Chao  Cao  Xuan  Yu  Jing-Jing  Wang  Xiao-Ru  Shen  Yan 《Chromatographia》2009,69(5-6):587-591

Sargassum fusiforme, the common Chinese edible seaweeds, was investigated for total arsenic concentration by ICP-MS and for individual arsenic species by LC-ICP-MS. For this purpose, a microwave-assisted procedure was used for the extraction of arsenic species in freeze-dried seaweed and an analytical procedure for the sensitive and efficient speciation of the arsenic species As(III), dimethylarsinic acid, monomethyl arsonic acid, As(V), arsenobetaine and arsenocholine was optimized. Arsenic compounds were extracted from the seaweed with a methanol/water mixture; the extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion exchange column. The arsenic species in Sargassum fusiforme are abundant. In some sample, the majority of arsenic compounds detected in the extracts were inorganic species, with a predominance of As (V). In addition, some significant amounts of unidentified arsenic compounds were also observed in the extracts.

  相似文献   

6.
A method using derivatization and supercritical fluid extraction coupled with gas chromatography was developed for the analysis of dimethylarsinate, monomethylarsonate and inorganic arsenic simultaneously in solid matrices. Thioglycolic acid n‐butyl ester was used as a novel derivatizing reagent. A systematic discussion was made to investigate the effects of pressure, temperature, flow rate of the supercritical CO2, extraction time, concentration of the modifier, and microemulsion on extraction efficiency. The application for real environmental samples was also studied. Results showed that thioglycolic acid n‐butyl ester was an effective derivatizing reagent that could be applied for arsenic speciation. Using methanol as modifier of the supercritical CO2 can raise the extraction efficiency, which can be further enhanced by adding a microemulsion that contains Triton X‐405. The optimum extraction conditions were: 25 MPa, 90°C, static extraction for 10 min, dynamic extraction for 25 min with a flow rate of 2.0 mL/min of supercritical CO2 modified by 5% v/v methanol and microemulsion. The detection limits of dimethylarsinate, monomethylarsonate, and inorganic arsenic in solid matrices were 0.12, 0.26, and 1.1 mg/kg, respectively. The optimized method was sensitive, convenient, and reliable for the extraction and analysis of different arsenic species in solid samples.  相似文献   

7.
This study presents an efficient strategy for separation of three phenolic compounds with high molecular weight from the crude extract of Terminalia chebula Retz. by ultrasound‐assisted extraction and high‐speed counter‐current chromatography. The ultrasound‐assisted extraction conditions were optimized by response surface methodology and the results showed the target compounds could be well enriched under the optimized extraction conditions. Then the crude extract was directly separated by high‐speed counter‐current chromatography without any pretreatment using n‐hexane/ethyl acetate/methanol/water (1:7:0.5:3, v/v/v/v) as the solvent system. In 180 min, 13 mg of A, 18 mg of B, and 9 mg of C were obtained from 200 mg of crude sample. Their structures were identified as Chebulagic acid (A, 954 Da), Chebulinic acid (B, 956 Da), and Ellagic acid (C) by 1H NMR spectroscopy.  相似文献   

8.
Betahistine is widely used for the treatment of vertigo. Owing to first‐pass metabolism, 2‐pyridyl acetic acid (2PAA, major metabolite of betahistine) was considered as surrogate for quantitation. A specific and sensitive LC–MS/MS method was developed and validated for quantitation of 2PAA using turbo‐ion spray in a positive ion mode. A solid‐phase extraction was employed for the extraction of 2PAA and 2PAA d6 (IS) from human plasma. Chromatographic separation of analytes was achieved using an ACE CN, 5 μm (50 × 4.6 mm) column with a gradient mobile phase comprising acetonitrile–methanol (90:10% v /v) and 0.7% v/v formic acid in 0.5 mm ammonium trifluoroacetate in purified water (100% v/v). The retention times of 1.15 and 1.17 min for 2PAA and internal standard, respectively, were achieved. Quantitation of 2PAA and internal standard was achieved by monitoring multiple reaction monitoring transition pairs (m /z 138.1 to m /z 92.0 and m /z 142.1 to m /z 96.1, respectively). The developed method was validated for various parameters. The calibration curves of 2PAA showed linearity from 5.0 to 1500 ng/mL, with a lower limit of quantitation of 5.0 ng/mL. The bias and precision for inter‐ and intra‐batch assays were <10%. The developed method was used to support clinical sample analysis.  相似文献   

9.
A “two‐step” pressurized microwave‐assisted extraction method coupled with ion chromatography with inductively coupled plasma mass spectrometry for the determination of different arsenic species in spirulina samples was developed. The extraction method used H2O2/H2O (1:5, v/v) as solvent to extract all arsenic species except arsenite, which was extracted by using water as solvent. The extraction method had a satisfactory recovery (>96%) and took a short time (20.0 min). With our method, all arsenic species in spirulina samples were completely separated and determined with recoveries of 84–105% and relative standard deviations of 2–4%. Food‐grade spirulina powder samples from seven provinces (Inner Mongolia, Zhejiang, Fujian, Hainan, Yunnan, Jiangsu, and Guangxi) in China were analyzed using the optimized protocol. Arsenate was detected at the concentration range of 170–394 ng/g in all the spirulina samples. Dimethylarsinic acid was detected at the concentration range of 32–839 ng/g in spirulina from above‐six provinces except Guangxi. Monomethylarsonic acid (67 ± 3 ng/g) was detected only in spirulina from Yunnan province. Arsenite was detected at the concentration range of 28–147 ng/g in spirulina from above five provinces except Hainan and Guangxi. Five unknown organic arsenic species were found in spirulina from above six provinces except Guangxi.  相似文献   

10.
A rapid and cost‐effective method based on microwave‐assisted extraction followed by capillary electrophoresis was developed for simultaneous quantification of seven alkaloids in Corydalis decumbens for the first time. The main parameters affecting microwave‐assisted extraction and capillary electrophoresis separation were investigated and optimized. The optimal microwave‐assisted extraction was performed at 40°C for 5 min using methanol/water (90:10, v/v) as the extracting solvent. Electrophoretic separation was achieved within 15 min using an uncoated fused‐silica capillary (50 μm internal diameter and 27.7 cm effective length) and a 500 mM Tris buffer containing 45% v/v methanol (titrated to pH* 2.86 with H3PO4). The developed method was successfully applied to the quantification of seven alkaloids in Corydalis decumbens obtained from different regions of China. The combination of microwave‐assisted extraction with capillary electrophoresis was an effective method for the rapid analysis of the alkaloids in Corydalis decumbens .  相似文献   

11.
A multi‐analyte screening method for the quantification of 50 acidic/neutral drugs in human plasma based on on‐line solid‐phase extraction (SPE)–HPLC with photodiode array detection (DAD) was developed, validated and applied for clinical investigation. Acetone and methanol for protein precipitation, three different SPE materials (two electro‐neutral, one strong anion‐exchange, one weak cation‐exchange) for on‐line extraction, five HPLC‐columns [one C18 (GeminiNX), two phenyl‐hexyl (Gemini C6‐Phenyl, Kinetex Phenyl‐Hexyl) and two pentafluorophenyl (LunaPFP(2), KinetexPFP)] for analytical separation were tested. For sample pre‐treatment, acetone in the ratio 1:2 (plasma:acetone) showed a better baseline and fewer matrix peaks in the chromatogram than methanol. Only the strong anion‐exchanger SPE cartridge (StrataX‐A, pH 6) allowed the extraction of salicylic acid. Analytical separation was carried out on a Gemini C6‐Phenyl column (150 × 4.6 mm, 3 µm) using gradient elution with acetonitrile–water 90:10 (v/v) and phosphate buffer (pH 2.3). Linear calibration curves with correlation coefficients r ≥ 0.9950/0.9910 were obtained for 46/four analytes. Additionally, this method allows the quantification of 23 analytes for therapeutic drug monitoring. Limits of quantitation ranged from 0.1 (amobarbital) to 23 mg/L (salicylic acid). Inter‐/intra‐day precisions of quality control samples (low/high) were better than 13% and accuracy (bias) ranged from ?14 to 10%. A computer‐assisted database was created for automated detection of 223 analytes of toxicological interests. Four cases of multi‐drug intoxications are presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A simple and cost‐effective HPLC method was established for quantification of 5‐hydroxyeicosatetraenoic acid (5‐HETE) in human lung cancer tissues. 5‐HETE from 27 patients' lung cancer tissues were extracted by solid‐phase extraction and analyzed on a Waters Symmetry C18 column (4.6 × 250 mm, 5 µm) with a mobile phase consisting of methanol, 10 mm ammonium acetate, and 1 m acetic acid (70:30:0.1, v:v:v) at a flow rate of 1.0 mL/min. The UV detection wavelength was set at 240 nm. The calibration curve was linear within the concentration range from 10 to 1000 ng/mL (r2 > 0.999, n = 7), the limit of detection was 1.0 ng/mL and the limit of quantitation was 10.0 ng/mL for a 100 µL injection. The relative error (%) for intra‐day accuracy was from 93.14 to 112.50% and the RSD (%) for intra‐day precision was from 0.21 to 2.60% over the concentration range 10–1000 ng/mL. By applying this method, amounts of 5‐HETE were quantitated in human lung cancer tissues from 27 human subjects. The established HPLC method was validated to be a simple, reliable and cost‐effective procedure that can be applied to conduct translational characterization of 5‐HETE in human lung cancer tissues. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A high‐throughput method based on ultrasonic‐assisted extraction, 96‐well plate thin‐film microextraction was established to determinate 18 antibiotics in animal feed. In this method, the extraction was implemented by ultrasonic‐assisted extraction for 30 min with disodium ethylenediaminetetraacetic acid‐McIlvaine buffer (pH 5) containing 6% sodium chloride w/v, purified by thin‐film microextraction and combined with 96‐well plate system to improve the efficiency. Optimization of thin‐film microextraction conditions was performed by methods of single factor and response surface, and finalized as: condition time: 20 min; adsorption time: 55 min; washing time: 5 s with water; desorption time: 30 min with acetonitrile/water (8:2, v/v) containing 0.1% formic acid v/v. Evaluation of different extractive phases showed that polystyrene‐divinylbenzene‐polyacrylonitrile was the optimum coating. The analysis was performed by ultra‐high performance liquid chromatography with tandem mass spectrometry. Recovery, inter‐ and intraday precision, linearity, limit of detection, and quantitation were evaluated. The average recoveries of 18 antibiotics were 66.6–93.5% at three spiked levels, intraday precision was 1–8.4%, and interday precision was 3.0–16.4%. The linearity was good for r> 0.99. Limits of detection and quantification were found in the range of 1–14 and 4–48 µg/kg, respectively.  相似文献   

14.
A new, simple, accurate and precise high‐performance thin‐layer chromatographic method has been developed and validated for simultaneous determination of an anthelmintic drug, albendazole, and its active metabolite albendazole, sulfoxide. Planar chromatographic separation was performed on aluminum‐backed layer of silica gel 60G F254 using a mixture of toluene–acetonitrile–glacial acetic acid (7.0:2.9:0.1, v /v/v) as the mobile phase. For quantitation, the separated spots were scanned densitometrically at 225 nm. The retention factors (R f) obtained under the established conditions were 0.76 ± 0.01 and 0.50 ± 0.01 and the regression plots were linear (r 2 ≥ 0.9997) in the concentration ranges 50–350 and 100–700 ng/band for albendazole and albendazole sulfoxide, respectively. The method was validated for linearity, specificity, accuracy (recovery) and precision, repeatability, stability and robustness. The limit of detection and limit of quantitation found were 9.84 and 29.81 ng/band for albendazole and 21.60 and 65.45 ng/band for albendazole sulfoxide, respectively. For plasma samples, solid‐phase extraction of analytes yielded mean extraction recoveries of 87.59 and 87.13% for albendazole and albendazole sulfoxide, respectively. The method was successfully applied for the analysis of albendazole in pharmaceutical formulations with accuracy ≥99.32%.  相似文献   

15.
As a famous Chinese herb having good inhibitory effects on numerous human cancers both in vitro and in vivo, Scutellaria barbata D. Don attracts extensive attention worldwide. In this work, four flavonoids named scutellarin, baicalin, luteolin, and apigenin were simply and rapidly prepared from S. barbata by microwave‐assisted extraction coupled to countercurrent chromatography. Extraction conditions including irradiation time, extraction temperature, liquid/solid ratio, and microwave power were optimized using an orthogonal array design method. The extract of S. barbata was separated and purified with a two‐phase solvent system composed of hexane/ethyl acetate/methanol/acetic acid/water (1:5:1.5:1:4, v/v/v/v/v) and 4.5 mg of scutellarin, 4.6 mg of baicalin, 1.1 mg of luteolin, 2.1 mg of apigenin were obtained from 2.0 g original sample in a single run. The purities of scutellarin, baicalin, luteolin, and apigenin determined by HPLC were 93.6, 97.3, 97.6, and 98.4%, respectively. The targeted compounds were identified by LC with MS and 1H NMR spectroscopy. The total time including extraction, separation, and purification was <300 min. Compared to traditional methods, microwave‐assisted extraction coupled to countercurrent chromatography method is more simple and rapid for the extraction, separation, and purification of flavonoid compounds from natural products.  相似文献   

16.
A rapid method combining microwave‐assisted extraction (MAE) and high‐speed counter‐current chromatography (HSCCC) was applied for preparative separation of six bioactive compounds including loganic acid ( I ), isoorientin‐4′‐O‐glucoside ( II ), 6′‐O‐β‐d ‐glucopyranosyl gentiopicroside ( III ), swertiamarin ( IV ), gentiopicroside ( V ), sweroside ( VI ) from traditional Tibetan medicine Gentiana crassicaulis Duthie ex Burk. MAE parameters were predicted by central composite design response surface methodology. That is, 5.0 g dried roots of G. crassicaulis were extracted with 50 mL 57.5% aqueous ethanol under 630 W for 3.39 min. The extract (gentian total glycosides) was separated by HSCCC with n‐butanol/ethyl acetate/methanol/1% acetic acid water (7.5:0.5:0.5:3.5, v/v/v/v) using upper phase mobile in tail‐to‐head elution mode. 16.3, 8.8, 12., 25.1, 40.7, and 21.8 mg of compounds I–VI were obtained with high purities in one run from 500 mg of original sample. The purities and identities of separated components were confirmed using HPLC with photo diode array detection and quadrupole TOF‐MS and NMR spectroscopy. The study reveals that response surface methodology is convenient and highly predictive for optimizing extraction process, MAE coupled with HSCCC could be an expeditious method for extraction and separation of phytochemicals from ethnomedicine.  相似文献   

17.
A simple and highly efficient interface to couple capillary electrophoresis with inductively coupled plasma mass spectrometry by a microflow polyfluoroalkoxy nebulizer and a quadruple ion deflector was developed in this study. By using this interface, six arsenic species, including arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, and arsenocholine, were baseline‐separated and determined in a single run within 11 min under the optimized separation conditions. The instrumental detection limit was in the range of 0.02–0.06 ng/mL for the six arsenic compounds. Repeatability expressed as the relative standard deviation (n = 5) of both migration time and peak area were better than 2.5 and 4.3% for six arsenic compounds. The proposed method, combined with a closed‐vessel microwave‐assisted extraction procedure, was successfully applied for the determination of arsenic species in the Solanum Lyratum Thunb samples from Anhui province in China with the relative standard deviations (n = 5) ≤4%, method detection limits of 0.2–0.6 ng As/g and a recovery of 98–104%. The experimental results showed that arsenobetaine was the main speciation of arsenic in the Solanum Lyratum Thunb samples from different provinces in China, with a concentration of 0.42–1.30 μg/g.  相似文献   

18.
Ion-pair reverse-phase HPLC-inductively coupled plasma (ICP) MS was employed to determine arsenite [As(III)], dimethyl arsenic acid (DMA), monomethyl arsenic (MMA) and arsenate [As(V)] in Chinese brake fern (Pteris vittata L.). The separation was performed on a reverse-phase C18 column (Haisil 100) by using a mobile phase containing 10 mM hexadecyltrimethyl ammonium bromide (CTAB) as ion-pairing reagent, 20 mM ammonium phosphate buffer and 2% methanol at pH 6.0. The detection limits of arsenic species with HPLC-ICP-MS were 0.5, 0.4, 0.3 and 1.8 ppb of arsenic for As(III), DMA, MMA, and As(V), respectively. MMA has been shown for the first time to experimentally convert to DMA in the Chinese brake fern, indicating that Chinese brake fern can convert MMA to DMA by methylation.  相似文献   

19.
We report the discovery of three toxicologically relevant methylated phenylarsenical metabolites in the liver of chickens fed 3‐nitro‐4‐hydroxyphenylarsonic acid (ROX), a feed additive in poultry production that is still in use in several countries. Methyl‐3‐nitro‐4‐hydroxyphenylarsonic acid (methyl‐ROX), methyl‐3‐amino‐4‐hydroxyphenylarsonic acid (methyl‐3‐AHPAA), and methyl‐3‐acetamido‐4‐hydroxyphenylarsonic acid (or methyl‐N ‐acetyl‐ROX, methyl‐N ‐AHPAA) were identified in such chicken livers, and the concentration of methyl‐ROX was as high as 90 μg kg−1, even after a five‐day clearance period. The formation of these newly discovered methylated metabolites from reactions involving trivalent phenylarsonous acid substrates, S‐adenosylmethionine, and the arsenic (+3 oxidation state) methyltransferase enzyme As3MT suggests that these compounds are formed by addition of a methyl group to a trivalent phenylarsenical substrate in an enzymatic process. The IC50 values of the trivalent phenylarsenical compounds were 300–30 000 times lower than those of the pentavalent phenylarsenicals.  相似文献   

20.
An ionic liquid‐based ultrasound‐assisted extraction method has been developed for the effective extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. The effects of some ultrasound‐assisted extraction parameters including the concentration of [BMIM][BF4], pH, ultrasonic power and time were investigated to optimize the ultrasound‐assisted extraction conditions. Compared to the regular ultrasound‐assisted extraction and traditional refluent extraction, the proposed [BMIM][BF4]‐based ultrasound‐assisted extraction offered shorter extraction times (from 6 h to 40 min) and remarkable higher efficiencies (approximately 30% improved), which supported the suitability of the proposed approach. In addition, the proposed approach was confirmed by the good correlation coefficient (R2), recovery and reproducibility (RSD, n = 5), which were in the range of 0.9992–0.9995, 85.5–101.1%, and 1.87–4.33%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号