首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a relative kinetic technique, rate coefficients have been measured, at 296 ± 2 K and 740 Torr total pressure of synthetic air, for the gas‐phase reaction of OH radicals with the dibasic esters dimethyl succinate [CH3OC(O)CH2CH2C(O)OCH3], dimethyl glutarate [CH3OC(O)CH2CH2CH2C(O)OCH3], and dimethyl adipate [CH3OC(O)CH2CH2CH2CH2C(O)OCH3]. The rate coefficients obtained were (in units of cm3 molecule?1 s?1): dimethyl succinate (1.89 ± 0.26) × 10?12; dimethyl glutarate (2.13 ± 0.28) × 10?12; and dimethyl adipate (3.64 ± 0.66) × 10?12. Rate coefficients have been also measured for the reaction of chlorine atoms with the three dibasic esters; the rate coefficients obtained were (in units of cm3 molecule?1 s?1): dimethyl succinate (6.79 ± 0.93) × 10?12; dimethyl glutarate (1.90 ± 0.33) × 10?11; and dimethyl adipate (6.08 ± 0.86) × 10?11. Dibasic esters are industrial solvents, and their increased use will lead to their possible release into the atmosphere, where they may contribute to the formation of photochemical air pollution in urban and regional areas. Consequently, the products formed from the oxidation of dimethyl succinate have been investigated in a 405‐L Pyrex glass reactor using Cl‐atom–initiated oxidation as a surrogate for the OH radical. The products observed using in situ Fourier transform infrared (FT‐IR) absorption spectroscopy and their fractional molar yields were: succinic formic anhydride (0.341 ± 0.068), monomethyl succinate (0.447 ± 0.111), carbon monoxide (0.307 ± 0.061), dimethyl oxaloacetate (0.176 ± 0.044), and methoxy formylperoxynitrate (0.032–0.084). These products account for 82.4 ± 16.4% C of the total reaction products. Although there are large uncertainties in the quantification of monomethyl succinate and dimethyl oxaloacetate, the product study allows the elucidation of an oxidation mechanism for dimethyl succinate. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 431–439, 2001  相似文献   

2.
Ozonolysis reactions of alkenes are suggested to play major roles in the chemistry of the troposphere. Rate constants for the gas‐phase reactions of O3 with a series of alkenes were determined using relative rate technique based on GC/FID measurements of alkene decays. Experiments were carried out in air over the temperature range of 278–353 K at an atmospheric pressure of 760 Torr. An excess of 1,3,5‐trimethylbenzene was used as a HO radical scavenger in all experiments. Arrhenius parameters were calculated for ozonolysis of 1‐butene, 1‐pentene, 1‐hexene, 1‐heptene, 2‐methyl‐1‐butene, isobutene, trans‐2‐butene, trans‐2‐pentene, cis‐2‐pentene, trans‐2‐hexene, cis‐2‐hexene, 3‐chloropropene, 1,1‐dichloroethene, and isoprene from temperature‐dependent studies of the rate constants. The rate constants obtained in this study are compared with previous literature data. A good linear correlation between the logarithms of the rate constants and calculated HOMO energies of selected alkenes is observed. However, no clear correlation could have been drawn for chlorinated substituted alkenes. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 678–684, 2002  相似文献   

3.
The ozonolysis of olefinic species is an important tropospheric process impacting on climate and human health. However, few studies have investigated these reactions as a function of temperature and even less information is available upon the effects of alkene heteroatomic substitution on the Arrhenius parameters. The electron‐withdrawing capacity of substituents about the olefinic bond strongly influences the rate of alkene ozonolysis. To understand better the effect of these substitutions, the temperature‐dependence of a series of ozone–chloroalkene reactions is investigated. Experiments were conducted in the EXTreme RAnge (EXTRA) chamber, over the range of 292–409 K and 760 Torr. The experimentally determined rate coefficients were fitted using an Arrhenius‐type analysis to yield the following activation energies: 30.80 ± 0.79, 23.18 ± 0.59, 65.2 ± 2.8, 116.9 ± 5.6, 29.5 ± 1.8, and 18.67 ± 0.96 kJ mol?1 and preexponential A‐factors 1.22+0.39?0.29×10?15, 9.3+6.7?5.4×10?16, 1.6+2.5?1.0×10?10, 6+22?3.9×10?4, 1.7+1.6?0.8×10?14, and 4.2+1.9?1.3×10?15 cm3 molecule?1 s?1 for cis‐1,2‐dichloroethene, trans‐1,2‐dichloroethene, trichloroethene, tetrachloroethene, 2‐chloropropene, and 3‐chloro‐1‐butene, respectively. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 43: 120–129, 2011  相似文献   

4.
The kinetics of the gas‐phase reactions of O3 with a series of selected terpenes has been investigated under flow‐tube conditions at a pressure of 100 mbar synthetic air at 295 ± 0.5 K. In the presence of a large excess of m‐xylene as an OH radical scavenger, rate coefficients k(O3+terpene) were obtained with a relative rate technique, (unit: cm3 molecule?1 s?1, errors represent 2σ): α‐pinene: (1.1 ± 0.2) × 10?16, 3Δ‐carene: (5.9 ± 1.0) × 10?17, limonene: (2.5 ± 0.3) × 10?16, myrcene: (4.8 ± 0.6) × 10?16, trans‐ocimene: (5.5 ± 0.8) × 10?16, terpinolene: (1.6 ± 0.4) × 10?15 and α‐terpinene: (1.5 ± 0.4) × 10?14. Absolute rate coefficients for the reaction of O3 with the used reference substances (2‐methyl‐2‐butene and 2,3‐dimethyl‐2‐butene) were measured in a stopped‐flow system at a pressure of 500 mbar synthetic air at 295 ± 2 K using FT‐IR spectroscopy, (unit: cm3 molecule?1 s?1, errors represent 2σ ): 2‐methyl‐2‐butene: (4.1 ± 0.5) × 10?16 and 2,3‐dimethyl‐2‐butene: (1.0 ± 0.2) × 10?15. In addition, OH radical yields were found to be 0.47 ± 0.04 for 2‐methyl‐2‐butene and 0.77 ± 0.04 for 2,3‐dimethyl‐2‐butene. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 394–403, 2002  相似文献   

5.
The reduction of chlorite ion by the hydrogen ascorbate ion in a neutral solution safely produces chlorine dioxide. The decrease in absorbance at 268 nm with the presence of dimethyl sulfoxide (DMSO) allows measurement of the ascorbate disappearance in the reaction with excess chlorite. The measured rate constant at 25 ± 0.02°C, 3.67 × 10?4 M DMSO, ionic strength 0.51 M (NaClO4), and in the presence of 3.32 × 10?9 M ethylenediaminetetraacetic acid is 13.81 ± 1.30 M?1 s?1. Rate constant measurements over the range 15–35°C gave an Arrhenius activation energy of 75.51 ± 4.53 kJ mol?1. This result is the first reported determination of the kinetics of this reaction and is consistent with either electron‐ or oxygen‐transfer mechanisms. Anomalously, reduction of chlorite results in its oxidation, because intermediate hypochlorite oxidizes chlorite.  相似文献   

6.
The reactions of the biogenic organic compounds isoprene and 2‐methyl‐3‐buten‐2‐ol (MBO) with ozone have been investigated under controlled conditions for pressure (atmospheric pressure) and temperature (293 ± 2 K), using FTIR spectrometry. CO was added to scavenge hydroxyl radical formation during the ozonolysis experiments. Reaction rate constants were determined by absolute rate technique, by measuring both ozone and the organic compound concentrations. The measured values were k1 = (1.19 ± 0.09) × 10?17 cm3 molecule?1 s?1 for the reaction between ozone and isoprene and k2 = (8.3 ± 1.0) × 10?18 cm3 molecule?1 s?1 for the reaction between ozone and MBO. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 152–156 2004  相似文献   

7.
Absolute rate constants and their temperature dependence were determined by time-resolved electron spin resonance for the addition of the radicals ·CH2CN and ·CH2CO2C(CH3)3 to a variety of mono- and 1,1-disubstituted and to selected 1,2- and trisubstituted alkenes in acetonitrile solution. To alkenes CH2?CXY, ·CH2CN adds at the unsubstituted C-atom with rate constants ranging from 3.3·103 M ?1S ?1 (ethene) to 2.4·106 M ?1S ?1 (1,1-diphenylethene) at 278 K, and the frequency factors are in the narrow range of log (A/M ?1S ?1) = 8.7 ± 0.3. ·CH2CO2C(CH3)3 shows a very similar reactivity with rate constants at 296 K ranging from 1.1·104 M ?1S ?1 (ethene) to 107 M ?1S ?1 (1,1-diphenylethene) and frequency factors log (A/M ?1S ?1) = 8.4 ± 0.1. For both radicals, the rate constants and the activation energies for addition to CH2?CXY correlate well with the overall reaction enthalpy. In contrast to the expectation of an electro- or ambiphilic behavior, polar alkene-substituent effects are not clearly expressed, but some deviations from the enthalpy correlations point to a weak electrophilicity of the radicals. The rate constants for the addition to 1,2- and to trisubstituted alkenes reveal additional steric substituent effects. Self-termination rate data for the title radicals and spectral properties of their adducts to the alkenes are also given.  相似文献   

8.
Cyclohexane (cC6H12) plays an important role in the combustion of practical liquid fuels, as a major component of naphthenic compounds. Therefore, the pyrolysis of cyclohexane was investigated by measuring the formation of H‐atoms. The thermal decomposition of 1‐hexene (1‐C6H12) was also studied, because of the assumption that 1‐hexene is the sole initial product of cyclohexane decomposition. For cyclohexane, the measurements were performed over a temperature range of 1320–1550 K, at pressures ranging from 1.8 to 2.2 bar; 1‐hexene experiments were done at temperatures between 1250 and 1380 K and pressures between 1.5 and 2.5 bar. For each experiment, the time‐dependent formation of H‐atoms was measured behind reflected shock waves by using the method of atomic resonance absorption spectrometry. For the dissociation of 1‐hexene to n‐propyl (C3H7) and allyl (C3H5) radicals, the following Arrhenius expression was derived: kR2(T) = 2.3 × 1016 exp(?36,672 K/T) s?1. For cyclohexane, overall rate coefficients (kov) were deduced for the global reaction cC6H12 → products + H from the H‐atom time profiles; the following temperature dependency was obtained: kov(T) = 4.7 × 1016 exp(?44,481 K/T) s?1. For both sets of rate coefficient values, an uncertainty of ±30% is estimated. Especially concerning the isomerization cC6H12 → 1‐C6H12, our experimental results are in excellent agreement with the rate coefficient values given by Tsang (Tsang, W. Int J Chem Kinet 1978, 10, 1119–1138). A reaction model was assembled that is able to reproduce the H‐atom profiles measured for both sets of experiments. According to this model, H‐atoms are mostly stemming from the thermal decomposition of allyl radicals (C3H5), which arise from the decomposition of 1‐hexene. Furthermore, it will be shown that the recombination of allyl radicals with H‐atoms to propene (C3H6) also represents a very important subsequent reaction. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 43: 107–119, 2011  相似文献   

9.
Rate coefficients for the reaction of NO3 with dimethyl ether, diethyl ether, di-n-propyl ether, and methyl t-butyl ether (MTBE) have been determined. Absolute rates were measured at temperatures between 258 and 373 K using the fast flow-discharge technique. Relative rate experiments were also made at 295 K in a reactor equipped with White optics and using FTIR spectroscopy to follow the reactions. The measured rate coefficients (in units of 10?15 cm3 molecule?1 s?1) at 295 K are: 0.26 ± 0.11, 2.80 ± 0.23, 6.49 ± 0.65, and 0.64 ± 0.06 for dimethyl ether, diethyl ether, di-n-propyl ether, and methyl t-butyl ether, respectively. The corresponding activation energies are 21.0 ± 5.0, 17.2 ± 4.0, 15.5 ± 2.1, and 20.1 ± 1.7 kJ mole?1. The error limits correspond to the 95%-confidence interval. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Emissions of biogenic volatile organic compounds are higher than those from anthropogenic sources. In this work, we studied the kinetics of the reaction of three unsaturated aldehydes (trans‐2‐pentenal, trans‐2‐hexenal, and 2‐methyl‐2‐pentenal) with ozone in a rigid atmospheric simulation chamber coupled to an FTIR spectrometer at four different temperatures (273, 298, 333, and 353 K). Reaction rate constants (× 10−18 cm3 molecule−1 s−1) at 298 K are 1.24 ± 0.06 for trans‐2‐pentenal (t‐2P), 1.37 ± 0.03 for trans‐2‐hexenal (t‐2H), and 1.58 ± 0.20) for 2‐methyl‐2‐pentenal (2M2P). The following Arrhenius expressions were deduced (cm3 molecule−1 s−1): The obtained data are presented and compared to those reported in the literature at room temperature, as well as to homologous alkenes. The atmospheric lifetimes with respect to ozone, derived from this study, are estimated to vary between 7 and 10 days.  相似文献   

11.
Properties indirectly determined, or alluded to, in previous publications on the titled isomers have been measured, and the results generally support the earlier conclusions. Thus, the common five‐coordinate intermediate generated in the OH?‐catalyzed hydrolysis of exo‐ and endo‐[Co(dien)(dapo)X]2+ (X=Cl, ONO2) has the same properties as that generated in the rapid spontaneous loss of OH? from exo‐ and endo‐[Co(dien)(dapo)OH]2+ (40±2% endo‐OH, 60±2% exo‐OH) and an unusually large capacity for capturing (R=[CoN3]/[CoOH][]=1.3; exo‐[CoN3]/endo‐[CoN3]=2.1±0.1). Solvent exchange for spontaneous loss of OH? from exo‐[Co(dien)(dapo)OH]2+ has been measured at 0.04 s?1 (k1, 0.50M NaClO4, 25°) from which similar loss from the endo‐OH isomer may be calculated as 0.24 s?1 (k2). The OH?‐catalyzed reactions of exo‐ and endo‐[Co(dien)(dapo)N3]2+ result in both hydrolysis of coordinated via an OH?‐limiting process =153 M ?1 s?1; =295 M ?1 s?1; KH=1.3±0.1 M ?1; 0.50M NaClO4, 25.0°) and direct epimerization between the two reactants =33 M ?1 s?1; =110 M ?1 s?1; 1.0M NaClO4, 25.0°). Comparisons are made with other rapidly reacting CoIII‐acido systems.  相似文献   

12.
Using a relative rate method, rate constants for the gas phase reactions of O3 with 1‐ and 3‐methylcyclopentene, 1‐, 3‐, and 4‐methylcyclohexene, 1‐methylcycloheptene, cis‐cyclooctene, 1‐ and 3‐methylcyclooctene, 1,3‐ and 1,5‐cyclooctadiene, and 1,3,5,7‐cyclooctatetraene have been measured at 296 ± 2 K and atmospheric pressure of air. The rate constants obtained (in units of 10?18 cm3 molecule?1 s?1) are 1‐methylcyclopentene, 832 ± 24; 3‐methylcyclopentene, 334 ± 12; 1‐methylcyclohexene, 146 ± 10; 3‐methylcyclohexene, 55.3 ± 2.6; 4‐methylcyclohexene, 73.1 ± 3.6; 1‐methylcycloheptene, 930 ± 24; cis‐cyclooctene, 386 ± 23; 1‐methylcyclooctene, 1420 ± 100; 3‐methylcyclooctene, 139 ± 9; cis,cis‐1,3‐cyclooctadiene, 20.0 ± 1.4; 1,5‐cyclooctadiene, 152 ± 10; and 1,3,5,7‐cyclooctatetraene, 2.60 ± 0.19, where the indicated errors are two least‐squares standard deviations and do not include the uncertainties in the rate constants for the reference alkenes (propene, 1‐butene, cis‐2‐butene, trans‐2‐butene, 2‐methyl‐2‐butene, and terpinolene). These rate data are compared with the few available literature data, and the effects of methyl substitution discussed. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 183–190, 2005  相似文献   

13.
Manganese(II) complex catalysts with hydrotris(pyrazolyl)borate ligands have been examined on their catalytic performance in ethylene polymerization and ethylene/1‐hexene copolymerization. The activities of [Mn(L6)(Cl)(NCMe)] ( 1 ) and [Mn(L10)(Cl)] ( 2 ) activated by Al(i‐Bu)3/[Ph3C][B(C6F5)4] for ethylene polymerization go up to 326 and 11 kg mol (cat?1) h?1, respectively, (L6? = hydrotris(3‐phenyl‐5‐methyl‐1‐pyrazolyl)borate anion, L10? = hydrotris(3‐adamantyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In particular, for ethylene/1‐hexene copolymerization, complex 1 gives high‐molecular‐weight poly(ethylene‐co‐1‐hexene)s with the highest Mw of 439,000 in manganese olefin polymerization catalyst systems. Moreover, the 1‐hexene incorporation by complex 1 seems more efficient than that by [Mn(L3)(Cl)] ( 4 ) (L3? = hydrotris(3‐tertiary butyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In this work, we demonstrated that the coordination geometry and coordination number are also important factors for ethylene polymerization reaction as well as steric hindrances and ligand frameworks in our manganese(II) catalysts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5720–5727, 2009  相似文献   

14.
The gas-phase reaction of ozone with C5? C10 alkenes(eight 1-alkenes, four 1,1-disubstituted alkenes, and cyclohexene) has been investigated at atmospheric pressure and ambient temperature (285–293 K). Cyclohexane was added to scavenge the hydroxyl radical, which forms as a product of the ozone-alkene reaction. The reaction rate constants, in units of 10?18 cm3 molecule?1 s?1, are 9.6±1.6 for 1-pentene, 9.7±1.4 for 1-hexene, 9.4±0.4 for 1-heptene, 12.5±0.4 for 1-octene, 8.0±1.4 for 1-decene, 3.8±0.6 for 3-methyl-1-pentene, 7.3±0.7 for 4-methyl-1-pentene, 3.9±0.9 for 3,3-dimethyl-1-butene, 13.3±1.4 for 2-methyl-1-butene, 12.5±1.1 for 2-methyl-1-pentene, 10.0±0.3 for 2,3-dimethyl-1-butene, 13.7±0.9 for 2-ethyl-1-butene, and 84.6±1.0 for cyclohexene. Substituent effects on alkene reactivity are examined. Steric effect appear to be important for all 1,1-disubstituted alkenes as well as for those 1-alkenes that bear s-butyl and t-butyl groups. The results are briefly discussed with respect to the atomospheric persistence of the alkenes studied. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Zn(II) ions sorption onto N‐Benzoyl‐N‐Phenylhydroxylamine (BPHA) impregnated polyurethane foam (PUF) has been studied extensively using radiotracer and batch techniques. Maximum sorption (~98%) of Zn(II) ions (8.9 × 10?6 M) onto sorbent surface is achieved from a buffer of pH 8 solution in 30 minutes using 7.5 mg/mL of BPHA‐impregnated polyurethane foam at 283 K. The sorption data follow Langmuir, Freundlich and Dubinin‐Radushkevich (D‐R) isotherms. The Langmuir constants Q = 18.01 ± 0.38 μ mole g?1 and b = (5.39 ± 0.98) × 103 L mole?1 have been computed. Freundlich constants 1/n = 0.29 ± 0.01 and Cm = 111.22 ± 12.3 μ mole g?1 have been estimated. Sorption capacity 31.42 ± 1.62 μ mole g?1, β = ?0.00269 ± 0.00012 kJ2 mole?2 and energy 13.34 ± 0.03 kJ mole?1 have been evaluated using D‐R isotherm. The variation of sorption with temperature yields ΔH = ?77.7 ± 2.8 k J mole?1, ΔS = ?237.7 ± 9.3 J mole?1 K?1 and ΔG = ?661.8 ± 117.5 k J mol?1 at 298 K reflecting the exothermic and spontaneous nature of sorption. Cations like Fe(III), Ce(III), Al(III), Pb(II) and Hg(II) and anions, i.e., oxalate, EDTA and tartrate, reduce the sorption significantly, while iodide and thiocyanate enhanced the sorption of Zn(II) ions onto BPHA‐impregnated polyurethane foam.  相似文献   

16.
Rate constants for the hydrolysis (kh) of six different amines in trans‐[Co((BA)2en)(amine)2]ClO4 complexes (amine = aniline 1a , para‐toluidine 1b , benzylamine 1c (primary amines), pyrrolidine 2a , piperidine 2b , morpholine 2c (secondary amines), and (BA)2en = Bisbenzoylacetoneethylenediiminato) in mixed methanol/water (1:1) solvent have been determined between 30 and 55°C. The hydrolysis product of 2c , trans‐[Co((BA)2en)(morpholine)(H2O)]ClO4, has been separately prepared and characterized by UV–vis and 1H NMR spectroscopy. Depending on the nature of the axial amine ligand the limiting first‐order rate constants for the amine hydrolysis at 40°C range from (3.42 ± 0.10) × 10?5 to (5.32 ± 0.13) × 10?5 s?1. At the first glance, a reasonable trend cannot be established between kh and the basicity or the inductive trans effect of the amine ligands. However, when the complexes are classified into two groups, based on the type of the amine (primary and secondary), the values of kh correlate well with the basicity or inductive effect of the amine in each group. The observed trend in kh values for the complexes with primary amines is 1a (5.32 ± 0.13) × 10?5 s?1 > 1b (3.51 ± 0.14) × 10?5 > 1c (1.72 ± 0.03) × 10?5 (40°C), which is opposite to the amine basicity strength. In the case of the complexes with secondary amines, the observed trend in kh values is in accord with amine basicity (or inductive trans effect), i.e. 2a (5.02 ± 0.22) × 10?5 > 2b (4.18 ± 0.10) × 10?5 > 2c (3.42 ± 0.10) × 10?5 s?1 (40°C). © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 387–393, 2002  相似文献   

17.
The synthesis, structure, and solution‐state behavior of clothespin‐shaped binuclear trans‐bis(β‐iminoaryloxy)palladium(II) complexes doubly linked with pentamethylene spacers are described. Achiral syn and racemic anti isomers of complexes 1 – 3 were prepared by treating Pd(OAc)2 with the corresponding N,N′‐bis(β‐hydroxyarylmethylene)‐1,5‐pentanediamine and then subjecting the mixture to chromatographic separation. Optically pure (100 % ee) complexes, (+)‐anti‐ 1 , (+)‐anti‐ 2 , and (+)‐anti‐ 3 , were obtained from the racemic mixture by employing a preparative HPLC system with a chiral column. The trans coordination and clothespin‐shaped structures with syn and anti conformations of these complexes have been unequivocally established by X‐ray diffraction studies. 1H NMR analysis showed that (±)‐anti‐ 1 , (±)‐anti‐ 2 , syn‐ 2 , and (±)‐anti‐ 3 display a flapping motion by consecutive stacking association/dissociation between cofacial coordination planes in [D8]toluene, whereas syn‐ 1 and syn‐ 3 are static under the same conditions. The activation parameters for the flapping motion (ΔH and ΔS) were determined from variable‐temperature NMR analyses as 50.4 kJ mol?1 and 60.1 J mol?1 K?1 for (±)‐anti‐ 1 , 31.0 kJ mol?1 and ?22.7 J mol?1 K?1 for (±)‐anti‐ 2 , 29.6 kJ mol?1 and ?57.7 J mol?1 K?1 for syn‐ 2 , and 35.0 kJ mol?1 and 0.5 J mol?1 K?1 for (±)‐anti‐ 3 , respectively. The molecular structure and kinetic parameters demonstrate that all of the anti complexes flap with a twisting motion in [D8]toluene, although (±)‐anti‐ 1 bearing dilated Z‐shaped blades moves more dynamically than I‐shaped (±)‐anti‐ 2 or the smaller (±)‐anti‐ 3 . Highly symmetrical syn‐ 2 displays a much more static flapping motion, that is, in a see‐saw‐like manner. In CDCl3, (±)‐anti‐ 1 exhibits an extraordinary upfield shift of the 1H NMR signals with increasing concentration, whereas solutions of (+)‐anti‐ 1 and the other syn/anti analogues 2 and 3 exhibit negligible or slight changes in the chemical shifts under the same conditions, which indicates that anti‐ 1 undergoes a specific heterochiral association in the solution state. Equilibrium constants for the dimerizations of (±)‐ and (+)‐anti‐ 1 in CDCl3 at 293 K were estimated by curve‐fitting analysis of the 1H NMR chemical shift dependences on concentration as 26 M ?1 [KD(racemic)] and 3.2 M ?1 [KD(homo)], respectively. The heterochiral association constant [KD(hetero)] was estimated as 98 M ?1, based on the relationship KD(racemic)=1/2 KD(homo)+1/4 KD(hetero). An inward stacking motif of interpenetrative dimer association is postulated as the mechanistic rationale for this rare case of heterochiral association.  相似文献   

18.
Terpenes and terpene alcohols are prevalent compounds found in a wide variety of consumer products including soaps, flavorings, perfumes, and air fresheners used in the indoor environment. Knowing the reaction rate of these chemicals with the nitrate radical is an important factor in determining their fate indoors. In this study, the bimolecular rate constants of k (16.6 ± 4.2) × 10?12, k (12.1 ± 3) × 10?12, and k (2.3 ± 0.6) × 10?14 cm3 molecule?1 s?1 were measured using the relative rate technique for the reaction of the nitrate radical (NO3?) with 2,6‐dimethyl‐2,6‐octadien‐8‐ol (geraniol), 3,7‐dimethyl‐6‐octen‐1‐ol (citronellol), and 2,6‐dimethyl‐7‐octen‐2‐ol (dihydromyrcenol) at (297 ± 3) K and 1 atmosphere total pressure. Using the geraniol, citronellol, or dihydromyrcenol + NO3? rate constants reported here, pseudo‐first‐order rate lifetimes (k′) of 1.5, 1.1, and 0.002 h?1 were determined, respectively. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 669–675, 2010  相似文献   

19.
In this paper, a real‐time laboratory study of the heterogeneous oxidation reaction of gas‐phase ozone with anthracene on surface substrates by using infrared spectroscopy in two distinctly different experimental configurations is reported. One set of kinetic measurements was made by attenuated total internal reflection infrared (ATR‐IR) spectroscopy using approximately 75‐nm films of anthracene adsorbed on ZnSe, for which the reactive uptake coefficient was determined to be (2.0 ± 1.1) × 10?7. Using an aerosol flow tube coupled to an infrared spectrometer (AFT‐IR), similar measurements were made on (NH4)2SO4 (ammonium sulfate) aerosols coated with a 0.1‐μm film of anthracene. The aerosol kinetic results as a function of the ozone concentration are consistent with a Langmuir–Hinshelwood‐type mechanism, for which the ozone‐partitioning coefficient was K = (1.4 ± 1.7) × 10?16 cm3 molecule?1, and the maximum pseudo‐first‐order rate coefficient was kImax = (0.035 ± 0.016) s?1. Infrared spectroscopic and mass spectrometric analysis of the ozonolysis reaction in the bulk phase identified the main ozonolysis products as dihydroxyanthrones, 9,10‐endoperoxide–anthracene, 9,10‐anthraquinone, and anthrone. Larger products were also seen in the mass spectra, most likely the result of secondary product and oligomer formation. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 694–707, 2011  相似文献   

20.
Ethylene/1‐hexene copolymerizations with disiloxane‐bridged metallocenes, rac‐ and meso‐1,1,3,3‐tetramethyldisiloxanediyl‐bis(1‐indenyl)zirconium dichloride (rac‐ 1 , meso‐ 1 ) activated by modified methylaluminoxane were performed to investigate the influence of conformational dynamics on comonomer selectivity. Although 1H NOESY (nuclear Overhauser and exchange spectroscopy) analysis indicated that the most stable conformation for the meso isomer in solution was that in which both indenes project over the metal coordination site, this isomer showed higher 1‐hexene selectivity in copolymerization (re = 140 ± 30, rh = 0.024 ± 0.004) than the rac isomer with only one indene over the coordination site (re = 240 ± 20, rh = 0.005 ± 0.001). The meso isomer showed high 1‐hexene selectivity, a high product of reactivity ratios (rerh = 3.3 ± 0.5) and produced copolymers that could be separated into fractions with different ethylene content suggesting that the active species exhibited multisite behavior and populated conformations with different comonomer selectivities during the copolymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3323–3331, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号