首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Cyclization of propargylic alcohols with CO2 is an important reaction in industry, and noble‐metal catalysts are often employed to ensure the high product yields under environmentally friendly conditions. Herein a porous noble‐metal‐free framework 1 with large 1D channels of 1.66 nm diameter was synthesized for this reaction. Compound 1 exhibits excellent acid/base stability, and is even stable in corrosive triethylamine for one month. Catalytic studies indicate that 1 is an effective catalyst for the cyclization of propargylic alcohols and CO2 without any solvents under mild conditions, and the turnover number (TON) can reach to a record value of 14 400. Furthermore, this MOF catalyst also has rarely seen catalytic activity when the biological macromolecule ethisterone was used as a substrate. Mechanistic studies reveal that the synergistic catalytic effect between CuI and InIII plays a key role in the conversion of CO2.  相似文献   

2.
Tungstate ions supported on the periodic mesoporous organosilica with ionic liquid frameworks (WO4=@PMO-IL) were found to be a recoverable catalyst system for the highly selective oxidation of various primary or secondary alcohols to the corresponding aldehydes or ketones by 30% H2O2 as green oxidant under neutral aqueous reaction conditions. The catalyst can be also recovered and efficiently reused in seven subsequent reaction cycles without any remarkable decreasing in the catalyst activity and selectivity. Moreover, N2 sorption analysis, transmission electron microscopy (TEM) images, and thermal gravimetric analysis (TGA) showed that the structure regularity and functional groups loaded of the catalyst were not affected during the reaction process.  相似文献   

3.
Polymer‐supported catalysts offer practical advantages for organic synthesis, such as improved product isolation, ease of catalyst recycling, and compatibility with parallel solution‐phase techniques. We have developed the (carboxypolystyrene‐catecholato)rhenium catalyst 2 derived from tyramine (=4‐(2‐aminoethyl)phenol), which is effective for alcohol oxidation with dimethylsulfoxide (DMSO) and for epoxide deoxygenation with triphenylphosphine. The supported [Re(catecholato)]catalyst 2 is air‐ and moisture‐stable and can be recovered and used repeatedly without decreasing activity. The procedures work with non‐halogenated solvents (toluene). DMSO for Re‐catalyzed alcohol oxidation is inexpensive and safer for transport and storage than commonly used peroxide reagents. The oxidation procedure was best suited for aliphatic alcohols, and the mild conditions were compatible with unprotected functional groups, such as those of alkenes, phenols, nitro compounds, and ketones (see Tables 1 and 2). Selective oxidation of secondary alcohols in the presence of primary alcohols was possible, and with longer reaction time, primary alcohols were converted to aldehydes without overoxidation. Epoxides (oxirans) were catalytically deoxygenated to alkenes with this catalyst and Ph3P (see Table 3). Alkyloxiranes were converted to the alkenes with retention of configuration, while partial isomerization was observed in the deoxygenation of cis‐stilbene oxide ( cis‐1,2‐diphenyloxirane). These studies indicate that supported [Re(catecholato)] complexes are effective catalysts for O‐atom‐transfer reactions, and are well suited for applications in organic synthesis.  相似文献   

4.
The catalytic activity of copper zirconium phosphate (ZPCu) in the selective oxidation of alcohols to their corresponding ketones or aldehydes, using H2O2 as an oxidizing agent, was studied. The oxidation reaction was performed without any organic solvent, phase-transfer catalyst, or additive. Steric factors associated with the substrates influenced the reaction. The catalyst was characterized using X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. It was shown that the interlayer distance increased from 0.74 to 0.80 nm and the crystallinity was reduced after Cu2+ intercalation into the layers. This catalyst can be recovered and reused three times without significant loss of activity and selectivity.  相似文献   

5.
Natural hydroxyapatite‐supported MnO2 (MnO2@NHAp) was easily prepared in situ from reduction of potassium permanganate with natural hydroxyapatite derived from cow bones in water at room temperature, and its structure was characterized using flame atomic absorption spectroscopy, X‐ray diffraction, thermogravimetric analysis, scanning electron microscopy and energy dispersive spectroscopy. The catalytic activity of the synthesized catalyst was investigated for the aerobic oxidation of alkylarenes and alcohols. MnO2@NHAp shows excellent catalytic performance for the oxidation of alkylarenes and alcohols to their corresponding carbonyl compounds without using any other oxidizing agent. This catalyst can be readily recycled and reused for several runs without any significant loss of efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This work describes a catalytic system consisting of both Na4H3[SiW9Al3(H2O)3O37]·12H2O(SiW9Al3) and water as solvents (a small quantity of organic solvents were used as co-solvent for a few substrates) that can be good for selective oxidation of alcohols to ketones (aldehydes) using 30% H2O2 without any phase-transfer catalyst under mild reaction conditions. The catalyst system allows easy product/catalyst separation. Under the given conditions, the secondary hydroxyl group was highly chemoselectively oxidized to the corresponding ketones in good yields in the presence of primary hydroxyl group within the same molecule, and hydroxides are selectively oxidized even in the presence of alkene. Benzylic alcohols were selectively oxidized to the corresponding benzaldehydes in good yields without over oxidation products in solvent-free conditions. Nitrogen, oxygen, sulfur-based moieties, at least for the cases where these atoms are not susceptible to oxidation, do not interfere with the catalytic alcohol oxidation.  相似文献   

7.
In this work, a new heterogeneous catalyst (SBA‐15/Im/WO42?) was prepared, and then its performance in the oxidation of organic sulfides was studied (using 30% H2O2 as green oxidant under neutral reaction conditions). This organic–inorganic hybrid mesoporous material was characterized by various techniques, such as FT‐IR, inductively coupled plasma, X‐ray powder diffraction, high‐resolution‐transmission electron microscopy, N2 adsorption–desorption and thermogravimetric analysis. The catalyst was also applied to the selective oxidation of various sulfides. The hybrid catalyst was easily recovered, and was very stable and retained good activity for at least five successive runs without any additional activation. Moreover, there was no remarkable decrease in the activity and selectivity of the catalyst. The products could be easily isolated by just removing the solvent after filtering the catalyst. The yields of the catalytic productions through this catalyst were in the range from 75% to 97%.  相似文献   

8.
Tin(IV)tetraphenylporphyrinato tetrafluoroborate, [SnIV(TPP)(BF4)2], was used as an efficient catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS). High-valent [SnIV(TPP)(BF4)2] catalyzes trimethylsilylation of primary, secondary and tertiary alcohols as well as phenols, and the corresponding TMS-ethers were obtained in high yields and short reaction times at room temperature. While, under the same reaction conditions [SnIV(TPP)Cl2] is less efficient to catalyze these reactions. One important feature of this catalyst is its ability in the chemoselective silylation of primary alcohols in the presence of secondary and tertiary alcohols and phenols. The catalyst was reused several times without loss of its catalytic activity.  相似文献   

9.
Selective and controlled aerobic oxidation of activated benzyl alcohols to the corresponding aldehydes is achieved in refluxing CH3CN using catalytic amounts of MoO2Cl2(L)2 where L is DMSO, DMF or THF. The catalysis reactions are possible under open air in the absence of any other external co‐oxidants. However, bubbling of oxygen to the reaction mixture is useful in making the catalysis reaction sustained. Both activated and deactivated varieties of α‐substituted benzyl alcohols (secondary alcohols) give ketones in the same reaction conditions. The inexpensive catalyst is selective towards activated primary benzyl alcohols and also, being mild, stops the oxidation at the aldehyde stage, making it synthetically useful. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Tungstate salt with imidazolium framework is found to be a recoverable and heterogeneous system favouring the highly selective oxidation of primary benzylic alcohols to corresponding aldehydes with 30% H2O2 as a green oxidant under neutral aqueous reaction conditions. Furthermore, in order to demonstrate the recyclability of the catalyst, it was recovered and efficiently reused in seven succeeding reaction cycles without any significant loss. The use of green solvent, very short reaction time with excellent yields and recyclability of the catalyst make this protocol highly advantageous.  相似文献   

11.
Two new complexes, [Pd(L1)(C,N)]NO3 ( 1 ) and [Pd(L2)(C,N)]NO3 ( 2 ) (L1 = 5‐nitro‐1,10‐phenanthroline, L2 = 4‐methyl‐1,10‐phenanthroline, C,N = benzylamine), have been synthesized and characterized using infrared and NMR spectroscopies and elemental analysis. Montmorillonite (MMT‐K10 clay) was used as a solid support for incorporating the cationic part of complexes 1 and 2 to produce catalysts 1 and 2 , respectively, as heterogeneous catalysts. Catalyst 1 was identified using powder X‐ray diffraction and scanning and transmission electron microscopies, and the content of palladium obtained from inductively coupled plasma analysis. By changing the electron‐donating group on the L1 ligand with an electron‐withdrawing one, a minor improvement was observed in the catalytic properties. Catalyst 1 showed better efficiency for oxidation of benzyl alcohol in comparison with catalyst 2 , so catalyst 1 was used for the aerobic oxidation of alcohols to corresponding aldehydes or ketones without over‐oxidation (with and without bubbling of air). This catalytic system showed high activity towards alcohols under mild conditions. Finally, the reusability of catalyst 1 was investigated with multiple reuses of the supported catalyst in subsequent alcohol oxidation reactions.  相似文献   

12.
The catalytic activity of graphene oxide‐bound tetrakis(p ‐aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], in the trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) is reported. The prepared catalyst was characterized using inductively coupled plasma analysis, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared and diffuse reflectance UV–visible spectroscopies. This heterogeneous catalyst was used for selective trimethylsilylation of various alcohols and phenols with HMDS in short reaction times and high yields. Also, the catalyst is of high reusability and stability, in that it was recovered several times without loss of its initial activity. The chemoselectivity of this catalytic system in the silylation of primary alcohols in the presence of secondary and tertiary alcohols and also phenols was investigated.  相似文献   

13.
The effect of water on CO2 hydrogenation to produce higher alcohols (C2–C4) was studied. Pt/Co3O4, which had not been used previously for this reaction, was applied as the heterogeneous catalyst. It was found that water and the catalyst had an excellent synergistic effect for promoting the reaction. High selectivity of C2–C4 alcohols could be achieved at 140 °C (especially with DMI (1,3‐dimethyl‐2‐imidazolidinone) as co‐solvent), which is a much lower temperature than reported previously. The catalyst could be reused at least five times without reducing the activity and selectivity. D2O and 13CH3OH labeling experiments indicated that water involved in the reaction and promoted the reaction kinetically, and ethanol was formed via CH3OH as an intermediate.  相似文献   

14.
The catalytic activity of 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], supported on chloromethylated MIL‐101, was investigated in the trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) and also their tetrahydropyranylation with 3,4‐dihydro‐2H‐pyran. Excellent yields, mild reaction conditions, short reaction times and reusability of the catalyst without significant decrease in its initial activity are noteworthy advantages of this supported catalyst. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
由于脂肪醇羟基和苄醇羟基具有相同的氧化反应活性,所以当分子内同时含有脂肪醇羟基和苄醇羟基时,很难选择氧化苄醇羟基合成含脂肪醇羟基的芳香醛或酮。本文报道了在离子液体-水介质中,NCS/NaBr/IL-TEMPO(离子液体负载TEMPO)催化氧化合成含有脂肪醇羟基的芳香醛、酮的方法,反应条件温和,选择性好,收率高,且离子液体和催化剂可以循环使用。  相似文献   

16.
In the present work, highly efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) catalyzed by high-valent [TiIV(salophen)(OTf)2] is reported. Under these conditions, primary, secondary and tertiary alcohols as well as phenols were silylated in short reaction times and high yields. It is noteworthy that this method can be used for chemoselective silylation of primary alcohols in the presence of secondary and tertiary alcohols and phenols. The catalyst was reused several times without loss of its catalytic activity.  相似文献   

17.
The vanadium phosphorous oxide (VPO) catalysts, supported on mesoporous hexagonal molecular sieves (HMS) with different vanadium loadings, were prepared by precipitation method on organic phase. Techniques such as XRD, BET and SEM, were used for characterization of the catalyst. The bulk VPO catalyst contains vanadyl pyrophosphate phase ((VO)2P2O7), and a small amount of VOPO4. The high surface area, large pore volume and pore size of HMS in VPO/HMS samples, provide an excellent dispersion of same phase of VPO compound on the support surface. Oxidation of various alcohols was studied in the liquid phase over VPO/HMS catalyst, using tert‐butylhydroperoxide (TBHP) as an oxidant. The activity of VPO/HMS samples were considerably increased with respect to bulk VPO catalyst. At 90 °C, the obtained activities were 0.567 and 6.545 gpro.g?1VPOh?1 over the bulk VPO and 20 wt% VPO/HMS catalysts, respectively. The effects of substrates, reaction time, reaction temperature, solvents, catalyst recycling and leaching of VPO in liquid phase reaction were also investigated. The following order has been observed for the percentage of conversions of alcohols: Benzylic alcohol > Secondary alcohol ~ Primary alcohol. The kinetic of benzyl alcohol oxidation using excess TBHP over VPO/HMS catalyst was investigated at temperatures of 27, 60 and 90 °C, and followed a pseudo‐first order with respect to benzyl alcohol.  相似文献   

18.
Titanium(IV) salophen trifluoromethanesulfonate, [TiIV(salophen)(OSO2CF3)2], as a catalyst enables selective tetrahydropyranylation of alcohols and phenols with 3,4‐dihydro‐2H‐pyran. Using this catalytic system, primary, secondary and tertiary alcohols, as well as phenols, were converted to their corresponding tetrahydropyranyl ethers in high yields and short reaction times at room temperature. Investigation of the chemoselectivity of this method showed discrimination between the activity of primary alcohols in the presence of secondary and tertiary alcohols and phenols. This heterogenized catalyst could be reused several times without loss of its catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Aerobic epoxidation of olefins at a mild reaction temperature has been carried out by using nanomorphology of [Cu3(BTC)2] (BTC=1,3,5‐benzenetricarboxylate) as a high‐performance catalyst through a simple synthetic strategy. An aromatic carboxylate ligand was employed to furnish a heterogeneous copper catalyst and also serves as the ligand for enhanced catalytic activities in the catalytic reaction. The utilization of a copper metal–organic framework catalyst was further extended to the aerobic oxidation of aromatic alcohols. The shape and size selectivity of the catalyst in olefin epoxidation and alcohol oxidation was investigated. Furthermore, the as‐synthesized copper catalyst can be easily recovered and reused several times without leaching of active species or significant loss of activity.  相似文献   

20.
《化学:亚洲杂志》2017,12(15):1915-1919
C‐Scorpionate vanadium(IV) [VOxCl3−x 3‐RC(pz)3}] [pz=pyrazol‐1‐yl; x= 0, R=SO3 ( 1 ); x= 1, R=CH2OH ( 2 ) or CH2OSO2Me ( 3 )] complexes supported on functionalized carbon nanotubes (CNTs) are the first V‐scorpionate catalysts used so far for the neat oxidation of o ‐, m ‐ or p ‐xylene, with TBHP (70 % aqueous solution), to the corresponding toluic acids (main products), tolualdehydes and methylbenzyl alcohols. Remarkably, a p ‐toluic acid yield of 43 % (73 % selectivity, TON=1.34×103) was obtained with 2 @CNT in a simple microwave‐assisted mild oxidation procedure, using a very low catalyst charge (3.2×10−2 mol % vs. substrate). Further, this occurred in the absence of any bromine source, what is significant towards the development of a greener and more sustainable process for oxidation of xylenes. Moreover, reuse of catalysts with preservation of their activity was found for up to six consecutive cycles. The effects of reaction parameters, such as reaction time, temperature, amount of catalyst or type of heating source, on the performance of the above catalytic systems are reported and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号