首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Comptes Rendus Chimie》2016,19(10):1247-1253
High surface area mesoporous silica based catalysts have been prepared by a simple hydrolysis/sol–gel process without using any organic template and hydrothermal treatment. A controlled hydrolysis of ethyl silicate-40, an industrial bulk chemical, as a silica precursor, resulted in the formation of very high surface area (719 m2/g) mesoporous (pore size 67 Å and pore volume 1.19 cc/g) silica. The formation of mesoporous silica has been correlated with the polymeric nature of the ethyl silicate-40 silica precursor which on hydrolysis and further condensation forms long chain silica species which hinders the formation of a close condensed structure thus creating larger pores resulting in the formation of high surface mesoporous silica. Ethyl silicate-40 was used further for preparing a solid acid catalyst by supporting molybdenum oxide nanoparticles on mesoporous silica by a simple hydrolysis sol–gel synthesis procedure. The catalysts showed very high acidity as determined by NH3-TPD with the presence of Lewis as well as Brønsted acidity. These catalysts showed very high catalytic activity for esterification; a typical acid catalyzed organic transformation of various mono- and di-carboxylic acids with a range of alcohols. The in situ formed silicomolybdic acid heteropoly-anion species during the catalytic reactions were found to be catalytically active species for these reactions. Ethyl silicate-40, an industrial bulk silica precursor, has shown a good potential for its use as a silica precursor for the preparation of mesoporous silica based heterogeneous catalysts on a larger scale at a lower cost.  相似文献   

2.
《Vibrational Spectroscopy》2002,28(2):263-275
Systematic investigation of sol–gel process in the Y–Ba–Cu–O acetate–tartrate system was performed using IR spectroscopy. Different values of synthesis parameters (temperature and duration of inorganic polymerization reactions, evaporation temperature and evaporation time during gelation) were used, and significant influence in some cases on superconducting characteristics of the oxide ceramics of composition YBa2Cu4O8 was observed. Characterization by IR spectroscopy and thermogravimetric analysis, revealed the difference of local homogeneity in the precursor gels prepared under different evaporation regimes during gelation process. In addition, the explanation of the possible hydrolysis and condensation reactions in the sol state has been suggested.  相似文献   

3.
Acid–base bifunctional mesoporous silica nanoparticles (MSN) were prepared by a one‐step synthesis by co‐condensation of tetraethoxysilane (TEOS) and silanes possessing amino and/or sulfonic acid groups. Both the functionality and morphology of the particles can be controlled. The grafted functional groups were characterized by using solid‐state 29Si and 13C cross‐polarization/magic angle spinning (CP/MAS) NMR spectroscopy, thermal analysis, and elemental analysis, whereas the structural and the morphological features of the materials were evaluated by using XRD and N2 adsorption–desorption analyses, and SEM imaging. The catalytic activities of the mono‐ and bifunctional mesoporous hybrid materials were evaluated in carbon–carbon coupling reactions like the nitroaldol reaction and the one‐pot deacetalization–nitroaldol and deacetalization–aldol reactions. Among all the catalysts evaluated, the bifunctional sample containing amine and sulfonic acid groups (MSN–NNH2–SO3H) showed excellent catalytic activity, whereas the homogeneous catalysts were unable to initiate the reaction due to their mutual neutralization in solution. Therefore a cooperative acid–base activation is envisaged for the carbon–carbon coupling reactions.  相似文献   

4.
Tetraethoxysilane (TEOS) is widely used to synthesize siliceous material by the sol–gel process. However, there is still some disagreement about the nature of the limiting step in the hydrolysis and condensation reactions. The goal of this research was to measure the variation in the concentration of intermediates formed in the acid-catalyzed hydrolysis by 29Si NMR spectroscopy, to model the reactions, and to obtain the rate constants and the activation energy for the hydrolysis and early condensation steps. We studied the kinetics of TEOS between pH 3.8 and 4.4, and four temperature values in the range of 277.2–313.2?K, with a TEOS:ethanol:water molar ratio of 1:30:20. Both hydrolysis and the condensation rate speeded up with the temperature and the concentration of oxonium ions. The kinetic constants for hydrolysis reactions increased in each step kh1?<?kh2?<?kh3?<?kh4, but the condensation rate was lower for dimer formation than for the formation of the fully hydrolyzed Si(OH)4. The system was described according to 13 parameters: six of them for the kinetic constants estimated at 298.2?K, six to the activation energies, and one to the equilibrium constant for the fourth hydrolysis. The mathematical model shows a steady increase in the activation energy from 34.5?kJ?mol?1 for the first hydrolysis to 39.2?kJ?mol?1 in the last step. The activation energy for the condensation reaction from Si(OH)4 was ca. 10?kJ?mol?1 higher than the largest activation energy in the hydrolytic reactions. The decrease in the net positive charge on the Si atom contributes to the protonation of the ethoxy group and makes it a better leaving group.  相似文献   

5.
《中国化学会会志》2018,65(4):424-429
In this study, we propose a time‐ and energy‐saving method using biodegradable gelatin as a green template and a low‐toxicity inorganic aluminum salt (Al(NO3)3·9H2O) as a low‐cost aluminum source for the preparation of mesoporous alumina (γ‐Al2O3). The effects of pH (pH 8.0–10.0), gelatin to aluminum source ratio (0–1.9), and the hydrothermal treatment time (0–72 h) are thoroughly explored. The gelatin can assemble with the aluminum species γ‐AlOOH via hydrogen bonding to prevent the self‐condensation of the γ‐AlOOH during the hydrothermal treatment. Distinctly, the mesoporous γ‐Al2O3 was obtained from the calcination of the resulting gelatin–γ‐AlOOH composites. Without gelatin, high‐crystallinity γ‐AlOOH formed after the hydrothermal treatment, which transformed into the nonporous γ‐Al2O3 with a small surface area (20 m2/g). Finally, it was found that with a gelatin/aluminum ratio of 0.81, reaction pH value of 8.0, and hydrothermal treatment time of 24 h, high‐surface‐area mesoporous γ‐Al2O3 (262 m2/g) with pore diameter of 6.3 nm could be synthesized.  相似文献   

6.
《化学:亚洲杂志》2017,12(24):3162-3171
New amino‐acid‐bridged periodic mesoporous organosilicas (PMOs) were constructed by hydrolysis and condensation reactions under acid conditions in the presence of a template. The tyrosine bissilylated organic precursor (TBOS) was first prepared through a multistep reaction by using tyrosine (a natural amino acid) as the starting material. PMOs with the tyrosine framework (Tyr‐PMOs) were constructed by simultaneously using TBOS and tetraethoxysilane as complex silicon sources in the condensation process. All the Tyr‐PMOs materials were characterized by XRD, FTIR spectroscopy, N2 adsorption–desorption, TEM, SEM, and solid‐state 29Si NMR spectroscopy to confirm the structure. The horseradish peroxidase (HRP) enzyme was first immobilized on these new Tyr‐PMOs materials. Optimal conditions for enzyme adsorption included a temperature of 40 °C, a time of 8 h, and a pH value of 7. Furthermore, the novel Tyr‐PMOs materials could store HRP for approximately 40 days and maintained the enzymatic activity, and the Tyr‐PMOs–10 % HRP with the best immobilization effect could be reused at least eight times.  相似文献   

7.
The unique physicochemical properties of ordered mesoporous transition metal oxides have attracted more and more attention. The hydrolysis process of metal oxide precursors is difficult to control, and it is difficult to synthesize an ordered mesoporous transition metal oxide material using the conventional template method. Ordered mesoporous Pt/Fe3O4–CeO2 heterostructure gel materials with excellent catalytic properties were successfully prepared using aerogel technology and the chemical deposition method. The Pt/Fe3O4–CeO2 material was an n–n combined heterostructured semiconductor material which consisted of a magnetic Fe3O4 layer, a CeO2 core and Pt noble metal doped nanoparticles. A layer of Fe3O4 thin film was formed on the surface of ordered mesoporous Pt/CeO2 gel matrix material using the chemical deposition method. The intriguing heterostructural features could facilitate reactant diffusion and exposure of active sites which could enhance synergistic catalytic effects between the Pt nanoparticles and CeO2 nanoparticles. Compared with Pt/CeO2, the prepared Pt/Fe3O4–CeO2 showed enhanced catalytic activity in the reduction of 4-nitrophenol at room temperature. The catalytic activity of the heterostructure catalysts was systematically investigated using 4-nitrophenol reduction as a model reaction. The results showed that the Pt (0.1%)/Fe3O4–CeO2 sample exhibited the optimal catalytic performance toward catalytic reduction of 4-nitrophenol to 4-aminophenol. The study provided a method for the preparation of heterostructure nanocatalysts with high efficiency, which would be effective for application in various catalytic reactions.  相似文献   

8.
Assisted by a new dissolution procedure, dicyandiamide (DCDA), an environmentally benign and cheap precursor, has been employed for the synthesis of mesoporous carbon nitride (CN) materials through a nanocasting approach. The synthesized mesoporous materials possessed high specific surface areas (269–715 m2 g?1) with narrow pore‐size distributions (about 5 nm) and faithfully replicated the mesostructures of the SBA‐15 and FDU‐12 templates. Several characterization techniques, including XRD, SAXS, TEM, Raman and FTIR spectroscopy, XPS, and CO2‐TPD, were used to analyze the physicochemical properties of these materials and the results showed that the mesoporous CND materials had graphitic‐like structures and consisted of CN heterocycles, as well as amino groups. In a series of Knoevenagel condensation reactions, as exemplified by the reaction of various aldehydes and nitriles, these mesoporous CND materials demonstrated high and stable catalytic activities, owing to an abundance of basic sites.  相似文献   

9.
PP/TiO2 nanocomposites were prepared from an original method based on the hydrolysis‐condensation (sol–gel method) reactions of titanium alkoxide inorganic precursor premixed with polypropylene (PP) under molten conditions. Nanocomposites with a mean diameter of primary particles lower than 5 nm were then prepared. The TiO2 particle dispersion in the PP matrix was characterized over a wide length scale from the combination of small angle X‐ray scattering, transmission electron microscopy, and linear viscoelasticty of molten nanocomposites. As a result, a fractal structure of these particles was highlighted at the highest concentration (φr ≥ 0.014) with a characteristic aggregation size daggr ≈ 130 nm. The relationships between fractal structure and linear viscoelastic have been discussed from the main works of the literature on the reinforcement of nanocomposites. The drastic alteration of the terminal relaxation zone (solid‐like behavior) is correlated to the formation of an aggregate‐particle network. The study of the nonlinear viscoelastic behavior (Payne effect) agrees qualitatively with this reinforcement mechanism. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1213–1222, 2010  相似文献   

10.
A novel ambient hydrolysis deposition (AHD) methodology that employs sequential water adsorption followed by a hydrolysis reaction to infiltrate SnO2 nanoparticles into the nanopores of mesoporous carbon in a conformal and controllable manner is introduced. The empty space in the SnO2/C composites can be adjusted by varying the number of AHD cycles. An SnO2/C composite with an intermediate SnO2 loading exhibited an initial specific delithiation capacity of 1054 mAh g?1 as an anode for Li‐ion batteries. The capacity contribution from SnO2 in the composite electrode approaches the theoretical capacity of SnO2 (1494 mAh g?1) if both Sn alloying and SnO2 conversion reactions are considered to be reversible. The composite shows a specific capacity of 573 mAh g?1 after 300 cycles, that is, one of the most stable cycling performances for SnO2/mesoporous carbon composites. The results demonstrated the importance of well‐tuned empty space in nanostructured composites to accommodate expansion of the electrode active mass during alloying/dealloying and conversion reactions.  相似文献   

11.
The hydrolysis and condensation processes of titanium iso-propoxide modified with catechol (C6H4(OH)2; H2cat) have been investigated by 1H, 13C and 17O nuclear magnetic resonance spectroscopy. The hydrolysis reactions of the modified titanium iso-propoxide in the system with Ti:tetrahydrofuran (THF):H2O = 1:20:x (x = 1, 2 and 5 in a molar ratio) are essentially completed in the initial stage (<1 h), and the condensation reactions also proceed significantly during this stage. Upon hydrolysis with H2O/Ti = 1, the iso-propoxy groups are selectively hydrolyzed and the catecholate groups remain bound to titanium. With H2O/Ti = 2 and 5, both the iso-propoxy and catecholate groups are hydrolyzed, and the hydrolysis of the iso-propoxy groups is relatively preferential. Approximately half the catecholate groups are stably bound to titanium, even after hydrolysis with H2O/Ti = 5.  相似文献   

12.
29Si-NMR Spectroscopy of Silicate Solutions. IV. Investigations on the Condensation of Monosilicic Acid Condensation reactions of the monosilicic acid prepared by hydrolysis of Si(OCH3)4 in diluted HCl are investigated by 29Si-n.m.r. spectroscopy. It is shown that the first product of the condensation, which is stable for some time, is not di- but cyclotrisilicic acid. The condensation then proceeds via higher monocyclic and polycyclic acids to branched and crosslinked polymer products. The kinetics of the condensation reactions is investigated in the dependence on SiO2 concentration and pH value. The mechanism of the condensation, particularly that in the low molecular range, is discussed.  相似文献   

13.
A novel method was developed to synthesize organic–inorganic hybrid hollow sub‐microspheres (HHSs) through the addition of colloidal SiO2. The hydrolysis rate of 3‐(methacryloyloxy)propyltrimethoxysilane (MPS) was accelerated by SiO2 particles; meanwhile, the condensation rate of the hydrolytic species was decelerated. Thus, the hydrolytic monomers and oligomers of MPS were preserved as emulsifiers. These emulsifiers can then emulsify the isopentyl acetate (PEA) to form a steady O/W emulsion. The HHSs were produced by subsequent free radical polymerization and removal of the oil core. The hydrolytic MPS acted as emulsifiers and polymerizable monomers at the emulsification and polymerization stage, respectively. Thus, extra emulsifiers, co‐emulsifiers, and organic monomers were omitted, which simplified the synthesis process. The good dispersion of HHSs in water and oil, as well as the EDX results, indicated the organic–inorganic hybrid structure of HHSs.  相似文献   

14.
Ordered mesoporous TiO2 materials with an anatase frameworks have been synthesized by using a cationic surfactant cetyltrimethylammonium bromide (C16TMABr) as a structure-directing agent and soluble peroxytitanates as Ti precursor through a self-assembly between the positive charged surfactant S+ and the negatively charged inorganic framework I? (S+I? type). The low-angle X-ray diffraction (XRD) pattern of the as-prepared mesoporous TiO2 materials indicates a hexagonal mesostructure. XRD and transmission electron microscopy results and nitrogen adsorption–desorption isotherms measurements indicate that the calcined mesoporous TiO2 possesses an anatase crystalline framework having a maximum pore size of 6.9 nm and a maximum Brunauer–Emmett–Teller specific surface area of 284 m2 g?1. This ordered mesoporous anatase TiO2 also demonstrates a high photocatalytic activity for degradation of methylene blue under ultraviolet irradiation.  相似文献   

15.
Formation of ordered mesoporous materials using surfactant templating proceeds via mechanisms relying on optimising interactions between the inorganic and organic components of the synthesis. For oxides, the rates of hydrolysis and condensation of the inorganic species relative the rate of assembly of the mesostructure is crucial. Synthetic strategies to control these factors have been reviewed and it appears that mesostructured silica can be prepared in most phases found in binary surfactant–water systems by optimising the volume fraction of the surfactant and the hydrolysed inorganic precursor.  相似文献   

16.
Organic–inorganic hybrids of poly(ether imide) and silica were prepared by in situ growth of the inorganic network by hydrolysis and condensation of TEOS. The dispersion of the inorganic and organic phase was possible in the nanoscale with addition of amino silane as shown by field emission electron microscopy and atomic force microscopy. An increase of Tg of dense films was detected by differential scanning calorimetry with incorporation of the inorganic component. Membranes with quite different morphologies were prepared by phase inversion with different TEOS concentrations. Their performance as support of composite membranes for vapor separation was evaluated under pressures of 80 bar, confirming the advantage of the introduction of the inorganic component.  相似文献   

17.
The amine‐ and diamine‐functionalized mesoporous carbons with hexagonal mesostructure have been prepared by a rationally two‐step modification procedure under mild reaction conditions, respectively. The physicochemical properties of the obtained solid basic mesoporous catalysts were characterized by XRD, TEM, N2 adsorption‐desorption, FT‐IR, EDX and elemental analysis techniques. The results indicated the organic amine groups were successfully introduced inside the channels of mesoporous carbons without destroying the well‐ordered 2D hexagonal mesostructure. A series of Knoevenagel condensation of aldehyde/ketone with active methylene compounds have been carried out over the diamine‐function‐ alized mesoporous carbons, which proved to be efficient heterogeneous basic catalysts and exhibited a similar catalytic activity after sixth cycles. This can be attributed to its hydrophobic framework and hydrophilic diamine groups, which led to amphiphilic properties and offered some advantages for the Knoevenagel condensation reactions.  相似文献   

18.
The general approach to mesoporous ordered silica and crystalline metal oxide thin films, involving soft chemistry, liquid deposition technique, surfactant templating and tuned annealing conditions, is presented. Highly ordered cubic mesoporous structures, made of amorphous SiO2 xerogels or nanocrystalline particles such as anatase TiO2, γ-Al2O3, ilmenite CoTiO3, or perovskite SrTiO3 have been chosen to illustrate this article. In situ time resolved SAXS analyses, involving synchrotron high flux, were used to assess the various phenomena involved during deposition, thermal treatment and crystallisation. It will be demonstrated that the self-assembly is not only critically dependant on the structuring agent to inorganic volume fraction, but also on chemical and processing parameters such as the inorganic degree of condensation and the atmosphere applied during the deposition. A general model of self-assembly, based on a Tunable Stated State, is proposed. Concerning the crystallisation step, we will show that, depending on the heating regime, ordered mesoporous nanocrystalline framework can be obtained through a rigorous control of nucleation, growth and diffusive sintering taking successively place in the mineral matrix. Finally, the porosity and pore size distribution of these silica and non silica layers were assessed using ellipsometry porosimetry. This novel and very efficient technique provides the full characteristics of the layer porosity by measuring the variation of optical constant associated to the adsorption/desorption of a gas within the porous network.  相似文献   

19.
This work continues a series of our studies on the synthesis of nanostructured carbon (NSC) by the pyrolysis of H2 + C3–C4 alkane mixtures on nickel and cobalt metal catalysts supported on chemically diverse inorganic materials (aluminosilicates, alumina, carbon) having different textural characteristics (mesoporous and macroporous supports) and shapes (granules, foamed materials, and honeycomb monoliths). Here, we consider Ni catalysts supported on granular mesoporous silica (SiO2). It has been elucidated how the yield of synthesized carbon depends on the Ni/SiO2 catalyst preparation method (homogeneous precipitation or impregnation) and on the composition of the impregnating solution, including the molar ratio of its components—nickel nitrate and urea. The morphology of catalytic NSC and Ni distribution in the silica granule have been investigated using a scanning electron microscope with an EDX analyzer. Carbon-containing composite supports (NSC/SiO2) have been employed as adsorbents for immobilizing microbial lipase. The enzymatic activity and stability of the resulting biocatalysts have been estimated in transesterification reactions of vegetable (sunflower and linseed) oils involving methyl or ethyl acetate, esterification, and synthesis of capric acid–isoamyl alcohol esters in nonaqueous media.  相似文献   

20.
Magnetic mesoporous silica nanocomposite, Fe3O4@MCM-41, was prepared and functionalized with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPS). Then Schiff base grafted nanoparticles were synthesized by the condensation of 5,5'-methylene bis (salicylaldehyde) and then benzhydrazide with Fe3O4@MCM-41-AEAPS. Finally, by adding Cu (CH3COOH)2.H2O, the magnetic nanoparticles (MNPs) functionalized with Cu (II) Schiff base complex were synthesized. The new organic–inorganic hybrid nanocomposite was characterized by FT-IR, PXRD, AAS, BET, TGA, VSM, FE-SEM, HRTEM and EDX techniques. Then, the performance of this copper based magnetic nanocatalyst was investigated for the synthesis of 5-substituted 1H-tetrazole derivatives using one pot three-component reactions of various aldehydes, hydroxyl amine hydrochloride and sodium azide. The catalyst can be easily isolated from the reaction mixture by applying an external magnet and reused for at least 5 times without significant loss in catalytic activity. Also, the antibacterial activity of the streptomycin loaded magnetic nanoparticles against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria in the presence and absence of a magnetic field were studied. Results revealed that when these materials exposed to the magnetic field, bacteriostatic activity of nanocomposites was increased. Furthermore, the enzyme immobilization ability of the synthesized compounds was investigated and the results showed that these nanoparticles efficiently immobilized amylase enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号