首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
用L-半胱氨酸(L-cysteine)作为稳定剂,以制备的CdTe量子点为核模板,水相合成了具有近红外发光的Ⅱ型核壳CdTe/CdSe半导体量子点。实验考察了合成温度,核模板的尺寸和组分比等因素对合成高质量的CdTe/CdSe量子点的影响。用紫外-可见吸收和荧光光谱研究了合成的量子点的光学性质。在优化的合成条件下,荧光发射光谱在586~753nm范围连续可调,荧光量子产率高达68%;通过X-射线衍射(XRD),X射线光电子能谱(XPS)和透射电镜(TEM)对合成的Ⅱ型核壳CdTe/CdSe量子点进行了结构和形貌表征。  相似文献   

2.
Successive ion layer adsorption and reaction (SILAR) originally developed for the deposition of thin films on solid substrates from solution baths is introduced as a technique for the growth of high-quality core/shell nanocrystals of compound semiconductors. The growth of the shell was designed to grow one monolayer at a time by alternating injections of air-stable and inexpensive cationic and anionic precursors into the reaction mixture with core nanocrystals. The principles of SILAR were demonstrated by the CdSe/CdS core/shell model system using its shell-thickness-dependent optical spectra as the probes with CdO and elemental S as the precursors. For this reaction system, a relatively high temperature, about 220-240 degrees C, was found to be essential for SILAR to fully occur. The synthesis can be readily performed on a multigram scale. The size distribution of the core/shell nanocrystals was maintained even after five monolayers of CdS shell (equivalent to about 10 times volume increase for a 3.5 nm CdSe nanocrystal) were grown onto the core nanocrystals. The epitaxial growth of the core/shell structures was verified by optical spectroscopy, TEM, XRD, and XPS. The photoluminescence quantum yield (PL QY) of the as-prepared CdSe/CdS core/shell nanocrystals ranged from 20% to 40%, and the PL full-width at half-maximum (fwhm) was maintained between 23 and 26 nm, even for those nanocrystals for which the UV-vis and PL peaks red-shifted by about 50 nm from that of the core nanocrystals. Several types of brightening phenomena were observed, some of which can further boost the PL QY of the core/shell nanocrystals. The CdSe/CdS core/shell nanocrystals were found to be superior in comparison to the highly luminescent CdSe plain core nanocrystals. The SILAR technique reported here can also be used for the growth of complex colloidal semiconductor nanostructures, such as quantum shells and colloidal quantum wells.  相似文献   

3.
In this work we present the preparation of highly luminescent anisotropic CdTe/CdSe colloidal heteronanocrystals. The reaction conditions used (low temperature, slow precursor addition, and surfactant composition) resulted in a tunable shape from prolate to branched CdTe/CdSe nanocrystals. Upon CdSe shell growth the heteronanocrystals show a gradual evolution from type-I to type-II optical behavior. These heteronanocrystals show a remarkably high photoluminescence quantum yield (up to 82%) and negligible thermally induced quenching up to temperatures as high as 373 K.  相似文献   

4.
Herein, we report the synthesis of aqueous CdTe/CdSe type‐II core–shell quantum dots (QDs) in which 3‐mercaptopropionic acid is used as the capping agent. The CdTe QDs and CdTe/CdSe core–shell QDs are characterized by X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR‐TEM), steady‐state absorption, and emission spectroscopy. A red shift in the steady‐state absorption and emission bands is observed with increasing CdSe shell thickness over CdTe QDs. The XRD pattern indicates that the peaks are shifted to higher angles after growth of the CdSe shell on the CdTe QDs. HR‐TEM images of both CdTe and CdTe/CdSe QDs indicate that the particles are spherical, with a good shape homogeneity, and that the particle size increases by about 2 nm after shell formation. In the time‐resolved emission studies, we observe that the average emission lifetime (τav) increases to 23.5 ns for CdTe/CdSe (for the thickest shell) as compared to CdTe QDs (τav=12 ns). The twofold increment in the average emission lifetime indicates an efficient charge separation in type‐II CdTe/CdSe core–shell QDs. Transient absorption studies suggest that both the carrier cooling and the charge‐transfer dynamics are affected by the presence of traps in the CdTe QDs and CdTe/CdSe core–shell QDs. Carrier quenching experiments indicate that hole traps strongly affect the carrier cooling dynamics in CdTe/CdSe core–shell QDs.  相似文献   

5.
We demonstrate the solution-phase synthesis of CdS/CdSe, CdSe/CdS, and CdSe/ZnTe core/shell nanowires (NWs). On the basis of bulk band offsets, type-I and type-II heterostructures are made, contributing to the further development of low-dimensional heteroassemblies using solution-phase chemistry. Core/shell wires are prepared by slowly introducing shell precursors into a solution of premade core NWs dispersed in a noncoordinating solvent at moderate temperatures (215-250 degrees C). Resulting heterostructures are characterized through low- and high-resolution transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray analysis. From these experiments, initial shell growth appears to occur through either Stranski-Krastanov or Volmer-Weber island growth. However, beyond a critical shell thickness, nucleation of randomly oriented nanocrystals results in a polycrystalline coat. In cases where overcoating has been achieved, corresponding elemental analyses show spatially varying compositions along the NW radial direction in agreement with expected element ratios. Electronic interactions between the core and shell were subsequently probed through optical studies involving UV-vis extinction spectroscopy, photoluminescence experiments, and transient differential absorption spectroscopy. In particular, transient differential absorption studies reveal unexpected shell-induced changes in core NW Auger kinetics at high carrier densities. Previously seen three-carrier Auger kinetics in CdS (bimolecular in CdSe) NWs were suppressed by the presence of a CdSe (CdS) shell. These observations suggest the ability to influence NW optical/electrical properties by coating them with a surrounding shell, a method which could be important for future NW optical studies as well as for NW-based applications.  相似文献   

6.
Magnetic ordering in doped Cd(1-x)Co(x)Se diluted magnetic quantum dots   总被引:1,自引:0,他引:1  
In this study, we report structural, vibrational, and magnetic data providing evidence of random ion displacement in the core of CdSe quantum dots on the Cd(2+) sites by Co(2+) ions (between x = 0 and 0.30). Structural evidence for core doping is obtained by analyzing the powder X-ray diffraction (pXRD), data which exhibits a linear lattice compression with increasing Co(2+) concentration, in accord with Vegard's law. Correlated with the pXRD shift, a hardening of the CdSe longitudinal optical phonon mode and a new local vibrational mode are observed which track Co(2+) doping concentration. Consistent with the observed core doping, superconducting quantum interference device (SQUID) measurements indicate a surprising increase for the onset of spin glass behavior by an order of magnitude over bulk Co:CdSe. Correlation of SQUID results, pXRD, and Raman measurements suggests that the observed enhancement of magnetic superexchange between Co(2+) dopant ions in this confined system arises from changes in the nature of coupling in size-restricted materials.  相似文献   

7.
在水相合成的CdTe量子点的体系中通过分批次加入新鲜配制的NaHSe和CdCl2溶液,制备出了CdSe包覆层数不同的CdTe/CdSe核壳量子点,并着重考察了CdSe包覆层数对CdTe/CdSe核壳量子点的光学特性以及微观结构的影响.与CdTe量子点相比,CdSe单层包覆的CdTe/CdSe核壳量子点的吸收峰和荧光发射峰出现明显红移;随着CdSe包覆层数的增多,CdTe/CdSe核壳量子点吸收光谱的覆盖范围向长波方向扩展,荧光发射峰强度逐步下降,荧光寿命大幅延长,体现出Ⅱ型核壳量子点的特征.X射线衍射(XRD)分析表明,随着CdSe包覆层数的增多,CdTe/CdSe核壳量子点的粉末衍射峰由CdTe衍射峰位置逐步向CdSe衍射峰位置靠近.CdTe/CdSe核壳量子点因其延伸到近红外区域的宽吸收特性致使其在太阳电池领域具有重要的应用前景.  相似文献   

8.
A series of core/shell CdSe/Zn1-xMnxS nanoparticles were synthesized for use in dual-mode optical and magnetic resonance (MR) imaging techniques. Mn2+ content was in the range of 0.6-6.2% and varies with the thickness of the shell or amount of Mn2+ introduced to the reaction. These materials showed high quantum yield (QY), reaching 60% in organic solvent. Water-soluble nanoparticles were obtained by capping the core/shell particles with amphiphilic polymer, and the QY values in water reached 21%. These materials also demonstrated high relaxivity with r1 values in the range of 11-18 mM-1 s-1 (at room temperature, 7 T). Both optical and MR imaging were performed on nanoparticles in aqueous solution and applied to cells in culture. The results showed that the QY and manganese concentration in the particles was sufficient to produce contrast for both modalities at relatively low concentrations of nanoparticles.  相似文献   

9.
Highly luminescent thioglycolic acid-capped CdTe-based core/shell quantum dots (QDs) were synthesized through encapsulating CdTe QDs in various inorganic shells including CdS, ZnS and CdZnS. CdTe/CdS core/shell QDs exhibited a significant redshift of emission peaks (a maximum emission peak of 652 nm for the core/shell QDs and 575 nm for CdTe cores) with increasing shell thickness. In contrast, the redshift of photoluminescence (PL) peak wavelength of CdTe/ZnS QDs was less than 15 nm. The PL peak wavelengths of the core/shell QDs depended strongly on core size and shell thickness. The PL quantum yields (QYs) of the CdTe/CdS core/shell QDs are up to 67 % while that of CdTe/ZnS core/shell QDs is 45 %. A composite CdZnS shell made CdTe cores a high PL QY up to 51 % and broadly adjusted PL spectra (a maximum PL peak wavelength of 664 nm). The epitaxial growth of the shell was confirmed by X-ray powder diffraction analysis and luminescence decay experiments. Because of high PL QYs, tunable PL spectra, and low toxicity from a ZnS surface layer, CdTe/CdZnS core/shell QDs will be great potential for bioapplications.  相似文献   

10.
We apply a variety of characterization tools, including dynamic light scattering (DLS), transmission electron microscopy (TEM), high-resolution size-exclusion chromatography (HRSEC), and X-ray fluorescence (XRF), to study CdSe and CdSe/ZnS semiconductor nanocrystals of various sizes. We compare the size monodispersity, composition, and optical properties such as absorbance, photoluminescence (PL), and photoluminescence excitation of samples synthesized by high-temperature organometallic decomposition methods to CdSe clusters synthesized in our laboratory using a room-temperature metathesis from ionic precursors in coordinating solvents. DLS revealed considerable aggregation in all the conventionally synthesized samples, while TEM showed significant size and shape polydispersity in the core/shell CdSe/ZnS nanoparticles. We demonstrate how HRSEC can be used to explore size and shape polydispersity in semiconductor nanocrystals by measurement of the spectral homogeneity of the PL and PLE of spectra obtained within cluster elution peaks observed by HRSEC. Using HRSEC, we show that size fractionation by solvent/nonsolvent precipitation is only partially effective in size selection and that discrete size populations are present in each fraction. HRSEC shows that our synthesis yields a single-size, blue-emitting, homogeneous population whose absorbance and PL correspond to those of the smallest-size fraction made by conventional synthesis. This suggests that especially stable discrete sizes are favored in both synthetic methods.  相似文献   

11.
In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems.  相似文献   

12.
The optical properties of 2 mixing types of CdS‐CdSe nanoparticles (i.e., coprecipitated CdS‐CdSe nanoparticles, CdS‐coated CdSe (CdSe/CdS)) were studied. Results indicated that the co‐precipitated nanoparticles kept the similar optical properties of both CdS and CdSe's, while the CdS/CdSe core‐shell structure showed totally different optical properties from the simple components. We paid special attention to the core/shell structure, as the core‐shell structure showed a better passivating effect. Therefore, the XRD and TEM were tested on the core‐shell structure. XRD results showed that the diffraction patterns of core‐shell structure were roughly the same as their simple components. And the TEM indicated the core‐shell structure had a uniform dispersion in the solution.  相似文献   

13.
梅芳  何锡文  李娟  李文友  张玉奎 《化学学报》2006,64(22):2265-2270
以半胱氨酸镉配合物为前体, 在水溶液中合成CdSe纳米粒子, 以CdS对其表面进行修饰, 得到具有核壳结构的CdSe/CdS 纳米粒子. 采用XRD, TEM表征其结构及形貌; 以荧光光谱研究了时间、pH值、壳量、壳前体加入方式、稳定剂用量等因素对CdSe/CdS光谱特性的影响.  相似文献   

14.
The size dependence of optical and electronic properties of semiconductor quantum dots (QDs) have been extensively studied in various applications ranging from solar energy conversion to biological imaging. Core/shell QDs allow further tuning of these properties by controlling the spatial distributions of the conduction-band electron and valence-band hole wave functions through the choice of the core/shell materials and their size/thickness. It is possible to engineer type II core/shell QDs, such as CdTe/CdSe, in which the lowest energy conduction-band electron is largely localized in the shell while the lowest energy valence-band hole is localized in the core. This spatial distribution enables ultrafast electron transfer to the surface-adsorbed electron acceptors due to enhanced electron density on the shell materials, while simultaneously retarding the charge recombination process because the shell acts as a tunneling barrier for the core localized hole. Using ultrafast transient absorption spectroscopy, we show that in CdTe/CdSe-anthraquinone (AQ) complexes, after the initial ultrafast (~770 fs) intra-QD electron transfer from the CdTe core to the CdSe shell, the shell-localized electron is transferred to the adsorbed AQ with a half-life of 2.7 ps. The subsequent charge recombination from the reduced acceptor, AQ(-), to the hole in the CdTe core has a half-life of 92 ns. Compared to CdSe-AQ complexes, the type II band alignment in CdTe/CdSe QDs maintains similar ultrafast charge separation while retarding the charge recombination by 100-fold. This unique ultrafast charge separation and slow recombination property, coupled with longer single and multiple exciton lifetimes in type II QDs, suggests that they are ideal light-harvesting materials for solar energy conversion.  相似文献   

15.
Here we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. The inner CdTe/CdS and CdTe/CdSe heterostructures have type-I, quasi-type-II, or type-II band offsets depending on the core size and shell thickness, and the outer CdS/ZnS and CdSe/ZnS structures have type-I band offsets. The emission maxima of the assembled heterostructures were found to be dependent on the CdTe core size, with a wider range of spectral tunability observed for the smaller cores. Because of encapsulation effects, the formation of successive shells resulted in a considerable increase in the photoluminescence quantum yield; however, identifying optimal shell thicknesses was required to achieve the maximum quantum yield. Photoluminescence lifetime measurements revealed that the decrease in the quantum yield of thick-shell nanocrystals was caused by a substantial decrease in the radiative rate constant. By tuning the diameter of the core and the thickness of each shell, a broad range of high quantum yield (up to 45%) nanocrystal heterostructures with emission ranging from visible to NIR wavelengths (500-730 nm) were obtained. This versatile route to engineering the optical properties of nanocrystal heterostructures will provide new opportunities for applications in bioimaging and biolabeling.  相似文献   

16.
The effect of the outer surface of core/shell nanocrystals on the fluorescence quantum yield was observed for InAs/InP and InAs/CdSe core/shells (see picture). For InAs/CdSe we observed substantial enhancement of the fluorescence quantum yield compared to the InAs core, and up to two times larger than the laser dye IR-140. Such core/shell nanocrystals have potential use as biological fluorescent markers in the near IR spectral range.  相似文献   

17.
Monodispersed cobalt nanoparticles (NPs) with controllable size (8–14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe2O4 (M=Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe2O4 nanocomposites are prepared with tunable shell thickness (1–5 nm). The Co/MFe2O4 nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Compared to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.  相似文献   

18.
Infrared-emitting nanocrystal quantum dots (NQDs) have enormous potential as an enabling technology for applications ranging from tunable infrared lasers to biological labels. Notably, lead chalcogenide NQDs, especially PbSe NQDs, provide efficient emission over a large spectral range in the infrared, but their application has been limited by instability in emission quantum yield and peak position on exposure to ambient conditions. Conventional methods for improving NQD stability by applying a shell of a more stable, wider band gap semiconductor material are frustrated by the tendency of lead chalcogenide NQDs toward Ostwald ripening at even moderate reaction temperatures. Here, we describe a partial cation-exchange method in which we take advantage of this lability to controllably synthesize PbSe/CdSe core/shell NQDs. Critically, these NQDs are stable against fading and spectral shifting. Further, these NQDs can undergo additional shell growth to produce PbSe/CdSe/ZnS core/shell/shell NQDs that represent initial steps toward bright, biocompatible near-infrared optical labels.  相似文献   

19.
The recombination dynamics of zinc-blende-type, deep-red emitting CdTe/CdS core-shell nanocrystals is studied over a wide temperature range. Two characteristic decay regimes are found: a temperature-dependent decay component of a few nanoseconds and a long-living temperature-independent component of approximately 315 ns. The average decay time of the exciton states changes from 20 to 5ns when the temperature is increased from 15 to 295 K. At low temperatures, the observed decay behavior is assigned to thermally induced population and decay of the allowed exchange-split exciton states. At temperatures above T>100 K, nonradiative decay channels involving phonons start to contribute to the exciton recombination. The observed broad distribution in decay times, monitored by stretched exponential fitting functions, we explain by variations in the electron-hole overlap caused by a partly incomplete CdTe/CdS core-shell structure and the nearly energy-degenerated bright and dark state superposition.  相似文献   

20.
Type-II band engineered quantum dots (CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures) are described. The optical properties of these type-II quantum dots are studied in parallel with their type-I counterparts. We demonstrate that the spatial distribution of carriers can be controlled within the type-II quantum dots, which makes their properties strongly governed by the band offset of the comprising materials. This allows access to optical transition energies that are not restricted to band gap energies. The type-II quantum dots reported here can emit at lower energies than the band gaps of comprising materials. The type-II emission can be tailored by the shell thickness as well as the core size. The enhanced control over carrier distribution afforded by these type-II materials may prove useful for many applications, such as photovoltaics and photoconduction devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号