首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A comparison of the square-planar complexes of group 10 (Pd(II), Pt(II)) and 16 (Se(II), Te(II)) centers with the tetraisopropyldiselenoimidodiphosphinate anion, [N((i)Pr2PSe)2](-), is made on the basis of the results of a solid-state (31)P, (77)Se, (125)Te, and (195)Pt NMR investigation. Density functional theory calculations of the respective chemical shift and (14)N electric field gradient tensors in these compounds complement the experimental results. The NMR spectra were analyzed to determine the respective phosphorus, selenium, tellurium, and platinum chemical shift tensors along with numerous indirect spin-spin coupling constants. Special attention was given to observed differences in the NMR parameters for the transition metal and main-group square-planar complexes. Residual dipolar coupling between (14)N and (31)P, not observed in the solid-state (31)P NMR spectra of the Pd(II) and Pt(II) complexes, was observed at 4.7 and 7.0 T for M[N((i)Pr 2PSe)2]2(M = Se, Te) yielding average values of R((31)P, (14)N)eff = 890 Hz, CQ((14)N) = 2.5 MHz, (1) J( (31)P, (14)N) iso= 15 Hz, alpha = 90 degrees , beta = 17 degrees . The span, Omega, and calculated orientation of the selenium chemical shift tensor for the diselenoimidodiphosphinate anion is found to depend on whether the selenium is located within a pseudoboat or distorted-chair MSe 2P 2N six-membered ring. The largest reported values of (1)J((77)Se, (77)Se) iso, 405 and 435 Hz, and (1)J((125)Te, (77)Se)iso, 1120 and 1270 Hz, were obtained for the selenium and tellurium complexes, respectively; however, in contrast a correspondingly large value of (1)J((195)Pt, (77)Se)iso was not found. The chemical shift tensors for the central atoms, Se(II) and Te(II), possess positive skews, while for Pt(II) its chemical shift tensor has a negative kappa. This observed difference for the shielding of the central atoms has been explained using a qualitative molecular orbital approach.  相似文献   

2.
Tryptophan-containing N-acetylated peptides AcTrp-Gly, AcTrp-Ala, AcTrp-Val, and AcTrp-ValOMe bind to platinum(II) and undergo selective hydrolytic cleavage of the C-terminal amide bond; the N-terminal amide bond remains intact. In acetone solution, bidentate coordination of the tryptophanyl residue via the C(3) atom of indole and the amide oxygen atom produces complexes of spiro stereochemistry, which are characterized by (1)H, (13)C, and (195)Pt NMR spectroscopy, and also by UV-vis, IR, and mass spectroscopy. Upon addition of 1 molar equiv of water, these complexes undergo hydrolytic cleavage. This reaction is as much as 10(4)-10(5) times faster in the presence of platinum(II) complexes than in their absence. The hydrolysis is conveniently monitored by (1)H NMR spectroscopy. We report the kinetics and mechanism for this reaction between cis-[Pt(en)(sol)(2)](2+), in which the solvent ligand is water or acetone, and AcTrp-Ala. The platinum(II) ion as a Lewis acid activates the oxygen-bound amide group toward nucleophilic attack of solvent water. The reaction is unimolecular with respect to the metal-peptide complex. Because the tryptophanyl fragment AcTrp remains coordinated to platinum(II) after cleavage of the amide bond, the cleavage is not catalytic. Added ligand, such as DMSO and pyridine, displaces AcTrp from the platinum(II) complex and regenerates the promoter. This is the first report of cleavage of peptide bonds next to tryptophanyl residues by metal complexes and one of the very few reports of organometallic complexes involving metal ions and peptide ligands. Because these complexes form in nonaqueous solvents, a prospect for cleavage of membrane-bound and other hydrophobic proteins with new regioselectivity has emerged.  相似文献   

3.
Binding of tryptophan residue to intrinsic metal ions in proteins is unknown, and very little is known about the coordinating abilities of indole. Indole-3-acetamide displaces the solvent ligands from cis-[Pt(en)(sol)2]2+, in which sol is acetone or H2O, in acetone solution and forms the complex cis-[Pt(en)(indole-3-acetamide)]2+ (3) of spiro structure, in which the new bidentate ligand coordinates to the Pt(II) atom via the C(3) atom of the indolyl group and the amide oxygen atom. This structure is supported by 1H, 13C, 15N, and 195Pt NMR spectra and by UV, IR, and mass spectra. Molecular mechanical simulations by Hyperchem and CHARMM methods give consistent structural models; the latter is optimized by density-functional quantum chemical calculations. Dipeptide-like molecules N-(3-indolylacetyl)-L-amino acid in which amino acid is alanine, leucine, isoleucine, valine, aspartic acid, or phenylalanine also displace the solvent ligands in acetone solution and form complexes cis-[Pt(en) N-(3-indolylacetyl)-L-amino acid)]2+ (6), which structurally resemble 3 but exist as two diastereomers, detected by 1H NMR spectroscopy. The bulkier the amino acid moiety, the slower the coordination of these dipeptide-like ligands to the Pt(II) atom. The indolyl group does not coordinate as a unidentate ligand; a second donor atom is necessary for bidentate coordination of this atom and the indolyl C(3) atom. The solvent-displacement reaction is of first and zeroth orders with respect to indole-3-acetamide and cis-[Pt(en)(sol)2]2+, respectively. A mechanism consisting of initial unidentate coordination of the ligand via the amide oxygen atom followed by closing of the spiro ring is supported by 1H NMR data, the kinetic effects of acid and water, and the activation parameters for the displacement reaction. In the case of N-(3-indolylacetyl)-L-phenylalanine, the bulkiest of the entering ligands, the reaction is of first order with respect to both reactants. The bidentate indole-3-acetamide ligand in 3 is readily displaced by (CH3)2SO and 2-methylimidazole, but not by CNO-, CH3COO-, and CH3CN. Complexes cis-[Pd(en)(sol)2]2+ and cis-[Pd(dtco)(sol)2]2+ react with indole-3-acetamide more rapidly than their Pt(II) analogues do and yield complexes similar to 3. This study augments our recent discovery of selective, hydrolytic cleavage of tryptophan-containing peptides by Pd(II) and Pt(II) complexes.  相似文献   

4.
A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph3P=CHCO2R, in nonaqueous media. The reaction between neutral (imino)Pt(IV) compounds [PtCl4[NH=C(Me)ON=CR1R2]2] [R1R2 = Me2, (CH2)4, (CH2)5, (Me)C(Me)=NOH], [PtCl4[NH=C(Me)ONR2]2] (R = Me, Et, CH2Ph), (R1 = H; R2 = Ph or C6H4Me; R3 = Me) as well as anionic-type platinum(IV) complexes (Ph3PCH2Ph)[PtCl5[NH=C(Me)ON=CR2]] [R2 = Me2, (CH2)4, (CH2)5] and 1 equiv of Ph3P=CHCO2R (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center. All thus prepared compounds (excluding previously described Delta4-1,2,4-oxadiazoline complexes) were characterized by elemental analyses, FAB mass spectrometry, IR and 1H, 13C[1H], 31P[1H] and 195Pt NMR spectroscopies, and X-ray single-crystal diffractometry, the latter for [PtCl2[NH=C(Me)ON=CMe2]2] [crystal system tetragonal, space group P4(2)/n (No. 86), a = b = 10.5050(10) A, c = 15.916(3) A] and (Ph3PCH2CO2Me)[PtCl3(NCMe)] [crystal system orthorhombic, space group Pna2(1) (No. 33), a = 19.661(7) A, b = 12.486(4) A, c = 10.149(3) A]. The reaction is also extended to a variety of other Pt(II)/Pt(IV) couples, and the ylides Ph3P=CHCO2R are introduced as mild and selective reducing agents of wide applicability for the conversion of Pt(IV) to Pt(II) species in nonaqueous media, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors, and for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies.  相似文献   

5.
The reaction of two equivalents of the functional phosphine ligand N-(diphenylphosphino)-1,3,4-thiadiazol-2-amine Ph2PNHC=NNCHS (2) with [PdCl2(NCPh)2] in the presence of NEt3 gives the neutral, P,N-chelated complex cis-[Pd(Ph2PN=CNN=CHS)2] ([Pd(2-H)2], 3b), which is analogous to the Pt(II) analogue cis-[Pt (Ph2PN=CNN=CHS)2] ([Pt(2-H)2], 3a) reported previously. These complexes function as chelating metalloligands when further coordinated to a metal through each of the CH-N atoms. In the resulting complexes, each endo-cyclic N donor of the thiadiazole rings is bonded to a different metal centre. Thus, the heterodinuclear palladium/platinum complexes cis-[Pt(Ph2PN=CNN=CHS)2PdCl2]([Pt(2-H)2·PdCl2], 4a) and cis-[Pd(Ph2PN=CNN=CHS)2PtCl2]([Pd(2-H)2·PtCl2], 4b) were obtained by reaction with [PdCl2(NCPh)2] and [PtCl2(NCPh)2], respectively. In contrast, reaction of 3a with [AuCl(tht)] occurred instead at the P-bound N atom, and afforded the platinum/digold complex cis-[Pt{Ph2PN(AuCl)=CNN=CHS}2] ([Pt(2-H)2(AuCl)2], 5). For comparison, reaction of 4a with HBF4 yielded cis-[Pt(Ph2PNH=CNN=CHS)2PdCl2](BF4)2([H24a](BF4)2, 6), in which the chelated PdCl2 moiety is retained. Complexes 3b, 4a·CH2Cl2, 4b·0.5C7H8, 5·4CHCl3 and 6 have been structurally characterized by X-ray diffraction.  相似文献   

6.
The reaction of the Pt(II) dihydride complex cis-[PtH2(dcype)](dcype = 1,2-bis(dicyclohexylphosphino)ethane) with the primary or secondary phosphine-borane adducts PhRPH x BH3(R = H, Ph) was found to exclusively afford the mono-substituted complexes cis-[PtH(PPhR x BH3)(dcype)](1: R = H; 2: R = Ph)via a dehydrocoupling reaction between Pt-H and P-H bonds. Similar reactivity was observed between the uncoordinated phosphines PhRPH (R = H, Ph) and cis-[PtH2(dcype)], which gave cis-[PtH(PPhR)(dcype)](4: R = H; 5: R = Ph). The complexes were characterized by 1H, 11B, 13C and 31P NMR spectroscopy, IR, MS and, in the case of 2, X-ray crystallography that confirmed the cis geometries. The di-substituted complex cis-[Pt(PhPH x BH3)2(dcype)](3) was prepared from the reaction of cis-[PtCl2(dcype)] with two equivalents of Li[PPhH x BH3]. This suggested that steric reasons alone cannot be used to explain the lack of reactivity with respect to a second dehydrocoupling reaction involving the remaining Pt-H bond in complexes 1, 2, 4 and 5.  相似文献   

7.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

8.
Complexes [Pt(mu-N,S-8-TT)(PPh(3))(2)](2) (1), [Pt(mu-S,N-8-TT)(PTA)(2)](2) (2), [Pt(8-TTH)(terpy)]BF(4) (3), cis-[PtCl(8-MTT)(PPh(3))(2)] (4), cis-[Pt(8-MTT)(2)(PPh(3))(2)] (5), cis-[Pt(8-MTT)(8-TTH)(PPh(3))(2)] (6), cis-[PtCl(8-MTT)(PTA)(2)] (7), cis-[Pt(8-MTT)(2)(PTA)(2)] (8), and trans-[Pt(8-MTT)(2)(py)(2)] (9) (8-TTH(2) = 8-thiotheophylline; 8-MTTH = 8-(methylthio)theophylline; PTA = 1,3,5-triaza-7-phosphaadamantane) are presented and studied by IR and multinuclear ((1)H, (31)P[(1)H]) NMR spectroscopy. The solid-state structure of 4 and 9 has been authenticated by X-ray crystallography. Growth inhibition of the cancer cells T2 and SKOV3 induced by the above new thiopurine platinum complexes has been investigated. The activity shown by complexes 4 and 9 was comparable with cisplatin on T2. Remarkably, 4 and 9 displayed also a valuable activity on cisplatin-resistant SKOV3 cancer cells.  相似文献   

9.
High-resolution solid-state 31P cross-polarization magic angle spinning (CP/MAS) spectra of a series of Pd(II) complexes were obtained. All of these spectra exhibit low-intensity satellite peaks flanking the main resonances which are assigned to originate from a combination of direct (D) and indirect (J) spin-spin coupling between the 31P and the 105Pd spins. The parameter 1J(105Pd,31P) is found to be sensitive to the nature of the ligand in a trans position and thus of great value in assigning the configuration, i.e. cis or trans, in square-planar complexes of Pd(II). A linear relationship between 1J(105Pd,31P) and 1J(195Pt,31P) in analogous Pd(II) and Pt(II) complexes is suggested, the latter parameter being a factor of ca 14 larger. Two-dimensional exchange spectroscopy proved valuable in resolving overlapping resonances and relating pairs of inequivalent 31P spins within the same complex and spreading their satellite manifolds into two dimensions. These two spectral features are unrelated, being due to dipolar coupling among the phosphorus spins in the former and finite lifetimes of the spin states of the 105Pd isotope in the latter case.  相似文献   

10.
The coordination chemistry of the perfluorovinyl phosphines PEt2(CF=CF2), P(i)Pr2(CF=CF2), PCy,(CF=CF2) and PPh(CF=CF2)2 to rhodium(I), palladium(II), and platinum(II) centres has been investigated. The electronic properties of the ligands are estimated based on v(CO) and 1J(Rh-P) values. X-Ray diffraction data for the square-planar Pd(II) and Pt(II) perfluorovinyl-phosphine containing complexes allow estimates of the steric demand for the series of ligands PPh2(CF=CF2), PEt2(CF=CF2), P(i)Pr2(CF=CF2), PCy2(CF=CF2) and PPh(CF=CF2)2 to be determined. The (CF=CF2) fragment is found to be more electron withdrawing than (C6F5) yet sterically less demanding. These ligands therefore provide a range of electron-neutral to phosphite-like electronic properties combined with a range of steric demands. This study also reveals that short intramolecular interactions from the metal centre to the beta-fluorine atom cis to phosphorus of the CF=CF2 groups are observed in all-trans square planar complexes of the ligands. Unusually, the complex [PtCl2{P(i)Pr2(CF=CF2)}2] crystallises with both cis- and trans-isomers present in the unit cell. It appears that co-crystallisation of both isomers occurs in order to maximise fluorous regions in the crystal packing, and the extended structure displays short fluorine-fluorine contacts. The generation of mixed geometries seems to be a phenomenon of crystallisation, as solution phase NMR studies reveal the presence of only the trans-isomer.  相似文献   

11.
The reaction of 2 equiv of LiSeCC-n-C(5)H(11) (1) with cis-PtCl(2)(Ph(3)P)(2) (2) gives a mixture of the cis and trans isomers of Pt(Ph(3)P)(2)(SeCC-n-C(5)H(11))(2) (3), which slowly isomerizes in CH(2)Cl(2) to the preferred trans form trans-3. The closely related cis-[Pt(dppf)(2)(SeCC-n-C(5)H(11))(2)] (4) (dppf = bis(diphenylphosphino)ferrocene) was prepared by a similar metathetical reaction using the platinum chloride complex of the chelating dppf to impose the cis geometry. The structures of the cis and trans complexes have been investigated in solution by heteronuclear NMR ((31)P, (77)Se, and (195)Pt) and, in the cases of trans-3 and 4, characterized in the solid state by single-crystal X-ray diffraction. Changing the coordination geometry from cis to trans induces significant changes in the structural and spectroscopic parameters, which do not comply with the previously anticipated donor-acceptor properties of selenolate ligands.  相似文献   

12.
The binuclear complex [Pt2Me2(ppy)2(mu-dppf)], 1, in which ppy = deprotonated 2-phenylpyridyl and dppf = 1,1'-bis(diphenylphosphino)ferrocene, was synthesized by the reaction of [PtMe(SMe2)(ppy)] with 0.5 equiv of dppf at room temperature. In this reaction when 1 equiv of dppf was used, the dppf chelating complex 2, [PtMe(dppf)(ppy-kappa1C)], was obtained. The reaction of Pt(II)-Pt(II) complex 1 with excess MeI gave the Pt(IV)-Pt(IV) complex [Pt2I2Me4(ppy)2(mu-dppf)], 3. When the reaction was performed with 1 equiv of MeI, a mixture containing unreacted complex 1, a mixed-valence Pt(II)-Pt(IV) complex [PtMe(ppy)(mu-dppf)PtIMe2(ppy)], 4, and complex 3 was obtained. In a comparative study, the reaction of [PtMe(SMe2)(ppy)] with 1 equiv of monodentate phosphine PPh3 gave [PtMe(ppy)(PPh3)], A. MeI was reacted with A to give the platinum(IV) complex [PtMe2I(ppy)(PPh3)], C. All the complexes were fully characterized using multinuclear (1H, 31P, 13C, and 195Pt) NMR spectroscopy, and complex 2 was further identified by single crystal X-ray structure determination. The reaction of binuclear Pt(II)-Pt(II) complex 1 with excess MeI was monitored by low temperature 31P NMR spectroscopy and further by 1H NMR spectroscopy, and the kinetics of the reaction was studied by UV-vis spectroscopy. On the basis of the data, a mechanism has been suggested for the reaction which overall involved stepwise oxidative addition of MeI to the two Pt(II) centers. In this suggested mechanism, the reaction proceeded through a number of Pt(II)-Pt(IV) and Pt(IV)-Pt(IV) intermediates. Although MeI in each step was trans oxidatively added to one of the Pt(II) centers, further trans to cis isomerizations of Me and I groups were also identified. A comparative kinetic study of the reaction of monomeric platinum(II) complex A with MeI was also performed. The rate of reaction of MeI with complex 1 was some 3.5 times faster than that with complex A, indicating that dppf in the complex 1, as compared with PPh 3 in the complex A, has significantly enhanced the electron richness of the platinum centers.  相似文献   

13.
Two homoleptic pyridyl-functionalized C,N-ortho-chelating aminoaryl platinum(II) complexes, cis-[Pt(eta(2)-C,N)] (3a,b), were prepared via an unconventional method involving the initial synthesis of a bromide-functionalized C,N-chelating aminoaryl platinum(II) precursor complex 8, to which subsequently pyridyl groups were attached via a Suzuki-Miyaura C-C coupling reaction. The electron-donating properties of the pyridyl nitrogen atoms of the resulting complexes (3a,b) were used in complexation reactions with monocationic NCN-pincer (NCN = [C6H3(CH2NMe2)(2-)2,6]-) platinum(II) (11a) and palladium(II) (12a) nitrate complexes [M(NCN)(NO3)], thereby obtaining four trimetallic coordination complexes 16-19. The difference in the pyridine-metal coordination behavior between platinum and palladium was studied by varying the ratios of the reagents and by variable-temperature NMR experiments. IR and Raman analyses of 11a and 12a were performed to determine the coordination behavior of the nitrate counteranion, and it was found that both NO3- and H2O coordinate to the metal centers. The crystal structure determinations of free pyridyl complex 3a, [Pt(NCN)(NO3)] (11a), and [Pt(NCN)(NO3)].(H2O) (11b), as well as the crystal structure of trisplatinum coordination complex 16, are reported.  相似文献   

14.
Oxidation of the acetate-bridged half-lantern platinum(II) complex cis-[Pt(II)(NH(3))(2)(μ-OAc)(2)Pt(II)(NH(3))(2)](NO(3))(2), [1](NO(3))(2), with iodobenzene dichloride or bromine generates the halide-capped platinum(III) species cis-[XPt(III)(NH(3))(2)(μ-OAc)(2)Pt(III)(NH(3))(2)X](NO(3))(2), where X is Cl in [2](NO(3))(2) or Br in [3](NO(3))(2), respectively. These three complexes, characterized structurally by X-ray crystallography, feature short (≈2.6 ?) Pt-Pt separations, consistent with formation of a formal metal-metal bond upon oxidation. Elongated axial Pt-X distances occur, reflecting the strong trans influence of the metal-metal bond. The three structures are compared to those of other known dinuclear platinum complexes. A combination of (1)H, (13)C, (14)N, and (195)Pt NMR spectroscopy was used to characterize [1](2+)-[3](2+) in solution. All resonances shift downfield upon oxidation of [1](2+) to [2](2+) and [3](2+). For the platinum(III) complexes, the (14)N and (195)Pt resonances exhibit decreased line widths by comparison to those of [1](2+). Density functional theory calculations suggest that the decrease in the (14)N line width arises from a diminished electric field gradient at the (14)N nuclei in the higher valent compounds. The oxidation of [1](NO(3))(2) with the alternative oxidizing agent bis(trifluoroacetoxy)iodobenzene affords the novel tetranuclear complex cis-[(O(2)CCF(3))Pt(III)(NH(3))(2)(μ-OAc)(2)Pt(III)(NH(3))(μ-NH(2))](2)(NO(3))(4), [4](NO(3))(4), also characterized structurally by X-ray crystallography. In solution, this complex exists as a mixture of species, the identities of which are proposed.  相似文献   

15.
Reactions of a pivalamidato-bridged head-to-head (HH) platinum(III) binuclear complex with 2-methyl-1,3-butadiene (isoprene) and p-styrenesulfonate and of an α-pyrrolidonato-bridged HH platinum(III) binuclear complex with p-styrenesulfonate were studied kinetically using UV-vis spectrophotometry and (1)H NMR spectroscopy, and detailed reaction mechanisms are proposed. Pt(III) binuclear complexes react with p-styrenesulfonate in four successive steps with mechanisms similar to that for an HH α-pyridonato-bridged Pt(III) binuclear complex with p-styrenesulfonate. In the case of isoprene, four steps were observed on the basis of UV-vis spectrophotometry. However, the reaction kinetics for steps 1 and 2 correspond to those for the previous reaction system, and those for steps 3 and 4 do not correspond to those for the previous system or to those observed by using (1)H NMR spectroscopy for the present isoprene system. By using UV-vis spectrophotometry, it was shown that isoprene preferentially π-coordinates to the Pt(N(2)O(2)) atom via the double bond adjacent to the methyl group in step 1. In step 2, a second isoprene molecule π-coordinates to the Pt(N(4)) atom, which is the rate-determining step, followed by nucleophilic attack of a water molecule on the π-coordinated isoprene on the Pt(N(2)O(2)) atom to form two isomeric σ-complexes. In the same step, π-coordinated isoprene on the Pt(N(4)) atom of the σ-complexes is released. This is different from the reaction of the Pt(III) binuclear complexes with other olefins. In step 3, reductive elimination of the σ-complexes occurs to form two diols and the HH pivalamidato-bridged Pt(II) binuclear complex. Finally, acid decomposition of the Pt(II) binuclear complex occurs to form monomers in step 4. From (1)H NMR spectroscopic observations, fast isomerization between σ-complexes and reductive elimination of the σ-complexes occurs in step 3, and isomerization from a 1,4-diol to a 1,2-diol occurs in step 4.  相似文献   

16.
Reaction of the title bicyclic disulfide 16 with [(Ph3P)2Pt(eta2-C2H4)] (2) yielded the corresponding (dithiolato)platinum(II) complex 17 by oxidative addition. The initial product 17 isomerized at room temperature in a [1,5]-sulfur rearrangement to give another (dithiolato)platinum(II) complex 18 in high isolated yield. Oxidation reactions of 18 with dimethyldioxirane (DMD) provided (sulfenato-thiolato)platinum(II) 23, (sulfinato-thiolato)platinum(II) 24, (sulfenato-sulfinato)platinum(II) 25, and (disulfinato)platinum(II) 26 complexes, the structures of which were elucidated by NMR spectroscopy and X-ray crystallography. The oxidation process took place regioselectively in the first step and chemoselectively in the second. The selectivities are discussed.  相似文献   

17.
Reactions of two platinum(II) complexes, cis-[Pt(NH3)2(H2O)2]2+ (Pt1) and cis-[Pt(en)(H2O)2]2+ (Pt2), with several sulfur-containing peptides, have been investigated by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS). The species produced in the reactions were detected with ESI-MS, and MS/MS analysis was performed to probe structural information. Collision-induced dissociation revealed different dissociation pathways for the main reaction products of the two platinum(II) complexes with the same peptides. The major difference is the prominent loss of ammonia ligand for complexes of Pt1 due to the strong trans effect of sulfur, whereas the loss of ethylenediamine (en) ligand from Pt2 complexes is less favored, reflecting the chelating effect of the bidentate ligand. Despite the differences in dissociation patterns, Pt1 and Pt2, in general, form structurally similar complexes with the same peptides. In the reactions with Met-Arg-Phe-Ala they both produce a N,S-chelate ring through the N-terminal NH2 and sulfur of the Met residue, and in the reactions with Ac-Met-Ala-Ser they bind to the sulfur of Met and deprotonate an amide nitrogen upstream from the anchor site. Both of them are able to promote hydrolysis of the peptides. In reactions with glutathione they both form four-membered Pt2S2 rings and Pt-S-Pt bonding through the bridging thiolate ligand, although the reaction rate is much slower for Pt2 due to steric hindrance of the en ligand.  相似文献   

18.
The reaction of the bis(amino)cyclodiphosph(III)azane, cis-{(tBuNH)(2)(PNtBu)(2)}, with AlMe(3), AlClMe(2), AlCl(2)Me, and AlCl(3) is reported. The less Lewis acidic compound AlMe(3) forms the adduct cis-[(tBuNH)(2)(PNtBu){P.(AlMe(3))NtBu}] (1), in which the aluminum atom is exclusively coordinated to one phosphorus atom. At elevated temperatures AlMe(3) undergoes migratory exchange between the two phosphorus atoms, but no methane elimination is observed. By using the more Lewis acidic compound AlClMe(2) the P-coordinated compound cis-[(tBuNH)(2)(PNtBu){P(AlClMe(2))NtBu}] (2) can be obtained at low temperatures. Compound 2 rearranges irreversibly to a product in which the AlClMe(2) group is coordinated by one exo-cyclic nitrogen atom. A concomitant 1,2-H shift from this nitrogen atom onto the phosphorus atom is observed. The N-coordinated rearrangement product slowly decomposes via a P-N bond cleavage in solution. Reaction of the even more Lewis acidic compounds AlCl(2)Me and AlCl(3) finally led to stable adducts, cis-[(tBuNH)(PNtBu)(tBuNAlCl(2)Me){P(H)NtBu}] (3), and cis-[(tBuNH)(PNtBu)(tBuNAlCl(3)){P(H)NtBu}] (4), in which the aluminum atoms are N-coordinated by a tBuN=PH unit.  相似文献   

19.
20.
The interaction of the extended, fully-conjugated macrocycle, dipyridyldibenzotetraaza[14]annulene (1), with the square planar palladium(II) and platinum(II) complexes [M(dppp)(triflate)(2)].2H(2)O (M = Pd, Pt) has been investigated in both solution and the solid state. In each case solid products showing a 1:1 ratio of metal complex: 1 were obtained. A 1:1 mixture of and [Pd(dppp)(2)(triflate)(2)].2H(2)O in dichloromethane yielded two major products as evidenced by the presence of two singlets in the (31)P {(1)H}-NMR spectrum of the reaction solution. Similarly, two singlets were evident in the corresponding spectrum obtained on dissolving the 1:1 product in nitrobenzene. The temperature and concentration dependence of the spectra clearly showed that the two species present in each case were in equilibrium. From the temperature dependence, the low field signal was assigned to the smaller of the two species. Broadly parallel behaviour was observed for the corresponding platinum-containing system. The MS-ESI spectrum of the platinum derivative showed the presence of a dinuclear species corresponding to [Pt(dppp)(1)](2)(2+) and an X-ray structure of this product confirmed that a corresponding dinuclear complex exists in the solid state. This product has a geometry in which two curved macrocyclic side units bridge two metal centres to yield an ellipse-shaped structure. Attempts to employ pulsed-field gradient spin-echo (PGSE) (31)P NMR confirmed that the lower-field resonance corresponded to the smaller of the two species in solution. STM (HOPG) imaging of the palladium- and platinum-containing products revealed arrays that appear to be composed of "zipper-like" rows of dimer units, with the dimensions of the latter comparing well with those found in the X-ray structure of [Pt(dppp)(1)](2)(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号