首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The sensitive and simple technique of fission track etch has been applied to determine trace concentration of uranium in blood samples for occupational and non-occupational workers, male and female, using CR-39 track detector that is employed for registration of induced fission tracks. The results show that the highest recorded uranium concentration in human blood of workers in the ministry of Science and Technology were 1.90 ppb (male, 36 years old, 12 years' work experience, and living in Basrah governorate) and minimum concentration 0.26 ppb (female, 40 years old, 10 years' work experience, and living in Baghdad), while for non-occupational worker, the maximum uranium concentration was 1.76 ppb (female, 63 years old, and living in Al-Muthana) and minimum concentration was 0.28 ppb (female, 20 years old, and living in Baghdad). It has also been found that the uranium concentration in human blood samples of workers in the ministry of Science and Technology are higher than those of non-occupational workers, and the uranium concentrations for female workers and for non-occupational workers were higher than those for male workers and non-occupational workers.  相似文献   

2.
Mumbai Harbour Bay (MHB) is a recipient of low level treated effluents from BARC, Trombay. In addition, the Bay is also a recipient of domestic and industrial wastes from the city of Mumbai and adjoining areas. The average value of uranium concentration reported for Indian Bay water at Tarapur and Mumbai is ~3.0 ppb which is comparable with the reported value for Arabian sea. As such the global average is reported to be ~3.3 ppb by Oceanologists. The present study deals with the distribution of uranium in seawater of MHB. The uranium activity in MHB by alpha spectrometry was found to be between 1.0 and 4.4 ppb with an average concentration of 2.5 ppb which is comparable with the earlier reported average activity of 2.6 ppb in the MHB as well as those reported globally. To compare the results obtained by alpha spectrometry, uranium estimation was also carried out using Laser fluorimeter and the levels of uranium concentration have ranged between 0.8 and 4.9 ppb with an average concentration of 2.7 ppb.  相似文献   

3.
Groundwater used for domestic purpose without proper treatment should be free from chemical and biological contaminants. This study was carried out to assess the groundwater quality with respect to uranium in a part of Nalgonda district, Andhra Pradesh, India. Groundwater was regularly monitored for uranium concentration by collection of samples once every two months from March 2008 to November 2009 from 44 wells. The concentration of uranium in groundwater ranged from 0.2 to 118.4 ppb. Groundwater is unsuitable for domestic use in 2 % of this area based on the limit of 60 ppb prescribed by the Atomic Energy Regulatory Board of India. However, due the wide variation in limit suggested by different organizations and countries, the no-observed-adverse-effect level and lowest-observed-adverse-effect level (in mg/kg day) was used to understand the dosage of uranium that reaches the people through drinking water pathway. This level varied from 0 to 0.02 mg/kg day and 0 to 0.08 mg/kg day based on an uncertainty factor of 10 and 50 respectively for the mean uranium concentration in groundwater in each well. With an uncertainty factor of 50, 5 groundwater samples had uranium above 0.06 mg/kg day which is the lowest-observed-adverse-effect level. This study showed that with the presence of present level of uranium concentration in groundwater of this area there is no major threat to humans through the drinking water pathway.  相似文献   

4.
In this study, concentration of uranium was determined in urine samples collected from 400 Brazilian children (6–14 years old) from different geographic regions. The mean concentration was 33.2 ng/g creatinine. Urinary concentrations of uranium were found to have region and age as predictors. The concentrations of uranium were higher in the South, Southeast and Central-West than in the other regions of Brazil. Moreover, higher concentrations of this element were found in younger children (<?10 years old). To the best of our knowledge, this is the first study to report the exposure of a Brazilian population to uranium.  相似文献   

5.
A newly established uranium processing facility has been commissioned at BARC, Trombay. Monitoring of occupational workers is essential to assess intake of uranium in this facility. A group of 21 workers was selected for bioassay monitoring to assess the existing urinary excretion levels of uranium before the commencement of actual work. Bioassay samples collected from these workers were analyzed by ion-exchange technique followed by laser fluorimetry. Standard addition method was followed for estimation of uranium concentration in the samples. The minimum detectable activity by this technique is about 0.2 ng. The range of uranium observed in these samples varies from 19 to 132 ng/L. Few of these samples were also analyzed by fission track analysis technique and the results were found to be comparable to those obtained by laser fluorimetry. The urinary excretion rate observed for the individual can be regarded as a ‘personal baseline’ and will be treated as the existing level of uranium in urine for these workers at the facility.  相似文献   

6.
Precise determination of uranium concentration in human urine is quite important in assessment of occupational and public exposure to uranium. In the present work, a pulsed dye nitrogen laser-induced kinetic phosphorescence analysis (KPA) was used to determine uranium in urine of Iraqi phosphate mine and fertilizer plant workers and in the population living near the mining region. A total of 92 urine samples were collected from workers of the Akashat phosphate mine, the Al-Qaim fertilizer complex, and the Akashat residential region. Uranium concentration in urine of all samples ranged between 0.49 to 5.26 μg L?1 with a total average of 1.47 ± 0.01 μg L?1. For comparison, all samples were also analyzed using a completely different technique; the nuclear fission track analysis using CR-39 SSNTD. Both techniques were capable of such measurements, although not with an equal degree of uncertainty. KPA technique is found to be more suitable for analysis of urine samples having high concentrations of uranium.  相似文献   

7.
Nuclear analytical techniques namely fission track technique using solid state nuclear track detector (SSNTD) and instrumental neutron activation analysis (INAA) have been standardized and applied for quantification of low uranium concentrations in liquid samples such as feed, elute and brine and solid sorbent samples respectively. The quantification of uranium is required for its recovery study from seawater, which is one of the potential sources of uranium. The uranium concentration of a liquid sample obtained by SSNTD method was compared with the other well established conventional techniques like ICP-MS, ICP-AES, adsorptive stripping voltametry and alpha spectrometry. INAA was applied for uranium concentration determination in the radiation grafted polyamidoxime sorbent samples.  相似文献   

8.
Garware Polyester Film, an indigenously available material has been evaluated systematically as a nuclear track detector for the detection of fission fragments. The relative fission track detection efficiency of this film was found to be (86.0±4.0)%. The bulk etch rate, determined by the gravimetric method, was found to be 0.75±0.05 μm/h. The track etch rate was determined as 15.0±1.5 μm/h. This detector was employed for the estimation of uranium in seawater samples and the results obtained were compared with the results obtained by using the commonly used Lexan detector. Uranium fractions after chemical separation from seawater samples were also analyzed by alpha-spectrometry and neutron activation analysis techniques and the results were compared with that obtained by the fission track method. Fission track method has the advantage, as it does not require any chemical separation. The indigenously available polyester film (polyethylene terphthalate) appears to be a good substitute of Lexan as nuclear track detector.  相似文献   

9.
Drinking water samples were collected from four different districts, namely Bhatinda, Mansa, Faridkot and Firozpur, of Punjab for ascertaining the U(nat.) concentrations. All samples were preserved, processed and analyzed by laser fluorimetry (LF). To ensure accuracy of the data obtained by LF, few samples (10 nos) from each district were analyzed by alpha spectrometry as well as by fission track analysis (FTA) technique. For FTA technique few μl of water sample was transferred to polythene tube, lexan detector was immersed in it and the other end of the tube was also heat-sealed. Two samples and one uranium standard were irradiated in DHRUVA reactor. Irradiated detectors were chemically etched and tracks counted using an optical microscope. Uranium concentrations in samples ranged from 3.2 to 60.5 ppb and were comparable with those observed by LF.  相似文献   

10.
A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940 and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope 230Th from the decay of 234U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 ± 1.5 years.  相似文献   

11.
Radiochemical neutron activation analysis (RNAA) was applied to geochemical and cosmochemical samples to determine trace amounts of Mo and W. To determine the Mo concentration by NAA accurately, the contribution of the fission products of U should be corrected. For that reason, we developed a simple and effective method, where a contribution of fissiogenic 99Mo was estimated by monitoring the ratio of uranium fission-product 99Mo to 133I. Mo concentrations corrected for fission with the W concentrations were consistent with the literature values, showing that 133I was found to be an effective monitor for fission correction. Detection limits are estimated to be 10 ppb for Mo and W and 30 ppb for U under the present experimental conditions.  相似文献   

12.
A brief study on dissolved radionuclides in aquatic environment, especially in ground water, constitutes the key aspect for assessment and control of natural exposure. In the present study the distribution of natural uranium and 226Ra concentration were measured in ground water samples collected within a 10 km radius around the Narwapahar uranium mine in the Singhbhum thrust belt of Jharkhand, India in 2007–2008. The natural uranium content in the ground water samples in this region was found to vary from 0.1 to 3.75 μg L?1 with an average of 0.87 ± 0.73 μg L?1 and 226Ra concentration was found to vary from 5.2 to 38.1 mBq L?1 with an average of 13.73 ± 7.34 mBq L?1. The mean annual ingestion dose due to intake of natural uranium and 226Ra through drinking water pathway to male and female adults population was estimated to be 6.55 and 4.78 μSv y?1, respectively, which constitutes merely a small fraction of the reference dose level of 100 μSv y?1 as recommended by WHO.  相似文献   

13.
Summary The demand for powdered quartz with low alpha —radioactivity has been increasing in the field of manufacturing semiconductor memory device packages. In this work, the determination of uranium in powdered high-purity quartz samples was studied using a simplified fission track procedure in which 0.5 g each of sample and a fission track detector (synthetic quartz glass plate, uranium impurity 0.04 ppb) were loaded in a polyethylene capsule and irradiated with a thermal neutron flux of 1017 cm–2. An easy procedure was also employed for chemical etching of fission tracks. All measurements of uranium concentration in the samples were made on a relative basis by comparing the unknown track densities to that measured for NBS glass SRM 617. The reliability was established for the present determination of uranium down to 0.1 ppb. The concentrations of uranium in powdered quartz samples studied in this work were in a range from 7.9 down to 0.12 ppb.
Uranbestimmung in Quarzpulver im ppb-Bereich mit Hilfe der Kernspurmethode
Zusammenfassung Da im Bereich der Halbleiterindustrie eine steigende Nachfrage nach Quarzpulver mit niedriger Alpha-Aktivität besteht, wurde die Uranbestimmung in hochreinem Quarzpulver mit Hilfe einer vereinfachten Kernspurmethode untersucht, bei der jeweils etwa 0,5 g der Probe und des Kernspurdetektors (synthetisches Quarzglasplättchen mit etwa 0,04 ppb U) in eine Polyethylenkapsel gegeben und mit einem thermischen Neutronenfluß von etwa 1017 cm–2 bestrahlt wurden. Ein einfaches Verfahren zum chemischen Ätzen der Spuren wurde angewendet. Alle Messungen der Urankonzentration wurden relativ durchgeführt durch Vergleich der unbekannten Spurdichten mit denen von Standardglas NBS SRM 617. Die Zuverlässigkeit des Verfahrens wurde bis herab zu etwa 0,1 ppb U geprüft. Die in den untersuchten Proben gefundenen Urankonzentrationen lagen im Bereich von 7,9 bis 0,12 ppb.
  相似文献   

14.
The fission track registration technique using Makrofol KG as detector and the wet method was developed for the determination of microgram amounts of uranium in water samples. This method allows the determination of uranium concentrations within the interval of 8.0 to 0.4 μg. U/l, the overall ranging from 3.3% to 29.0%. Results obtained for water samples from several sources in the State of São Paulo, Brasil, are reported.  相似文献   

15.
Samples from a potentially contaminated industrial area were analyzed for uranium using neutron activation analysis (NAA). Uranium concentration values had a typical uncertainty of 2 % and a detection limit of 1 Bq/kg. To investigate the potential leaching dynamics into ground water two techniques were employed. The US EPA Toxicity Characterization Leaching Procedure (TCLP) and the Sequential Extraction Procedure (SEP) were used to determine the concentration of uranium in the leachates. TCLP and SEP showed that very little of the uranium leached into solution under different chemical conditions. Values of uranium leachates ranged from 0.05 to 3.5 Bq/L; a concentration much lower than the results found in the soil concentrations which ranged from 29 to 155 Bq/kg. NAA showed an 8 % uncertainty for leachates with a detection limit of 0.13 Bq/L. To mimic environmental conditions and acid rain, pH 4.3 water was used as the extraction solvent instead of the acetic acid routinely used in TCLP. Results confirmed that very low amounts of uranium leached with values ranging from 0.0002 to 0.0122 Bq/L. These values represent 0.01–1 % of the uranium in the soil samples. The distribution of uranium in soil according to particle size was also investigated to evaluate its potential movement and possible contamination of the water table. Particles below 250 μm in diameter showed a linear increase in uranium concentration whereas those with a larger diameter had constant uranium content.  相似文献   

16.
A great deal of research has been directed towards the problem of reduction of uranium concentration from few hundreds of ppb to less than 20 ppb, a limit of uranium in drinking water from ground water resources fixed in Dec, 2001 by US, Environmental Protection Agency. Laboratory simulated experiments were carried out for the reduction of U(VI) concentration in well water from few thousands of ppb to less than 20 ppb. Well water samples were spiked with U(IV) ranging from 1000 to 2000 ppb. The contaminated solutions were passed through a glass column containing of chlorella impregnated beads of calcium alginate. Chlorella(Chlorella pyrendoidosa), a fresh water algae, was immobilized in sodium alginate in the form of beads by using 0.2M calcium chloride solution. The solution was passed again through a charcoal solution to remove any trace of impurities. The concentration of uranium after treatment ranged from 10 to 20 ppb. The concentration of other major cations and anions in the solution were also monitored. This low cost kit was proposed for on-line removal of uranium from ground water used for drinking purposes. For taking care of waste disposal, 99-100% of the adsorbed uranium on beads was recovered by 0.1M HNO3. The desorption results suggest that the uptake of uranium by Chlorella is a physico-chemical adsorption on the cell surface, not a biological activity. The uranium in the algal cells is coupled to the ligand, which can be easily substituted with NO3 -. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Uranium concentration in groundwater reflect both redox conditions and uranium content in host rock. In the present study an attempt has been made to study the uranium concentration and activity ratios of uranium isotopes to present the geochemical conditions of the groundwater in Malwa region of Punjab state, India and the reason for high uranium levels and variation of activity ratios from secular equilibrium conditions. Uranium concentration in groundwater samples was found to be in the range of 13.9 ± 1.2 to 172.8 ± 12.3 μg/l with an average value of 72.9 μg/l which is higher than the national and international guideline values. On the basis of uranium concentration, the groundwater of the study region may be classified as oxidized aquifer on normal uranium content strata (20 %) or oxidized aquifer on enhanced uranium content strata (80 %). The 238U, 235U and 234U isotopic concentration in groundwater samples was found to be in the range of 89.2–1534.5, 4.4–68.5, and 76.4–1386.2 mBq/l, respectively. Activity ratios of 234U/238U varies from 0.94 to 1.85 with a mean value of 1.11 which is close to unity that shows secular equilibrium condition. High value of 234U isotope than 238U may be due to alpha recoil phenomenon. The plot of AR of 234U/238U against the total uranium content in log scale reveals that the groundwaters of the study region either belongs to stable accumulation or normal oxidized aquifer.  相似文献   

18.
Illegal steroid administration to enhance growth performance in veal calves has long been, and still is, a serious issue facing regulatory agencies. Over the last years, stating undisputable markers of illegal treatment has become complex because of the endogenous origin of several anabolic steroids. Knowledge on the origin of an analyte is therefore of paramount importance. The present study shows the presence of steroid analytes in wooden crates used for housing veal calves. For this purpose, an analytical procedure using accelerated solvent extraction (ASE®), solid-phase extraction (SPE) and ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (U-HPLC-MS-MS) is developed for the characterisation of androstadienedione (ADD), boldenone (bBol), androstenedione (AED), β-testosterone (bT), α-testosterone (aT), progesterone (P) and 17α-hydroxy-progesterone (OH-P) in wood samples. In samples of wooden crates used for housing veal calves, ADD, AED, aT and P could be identified. Using the standard addition approach concentrations of these analytes were determined ranging from 20?±?4 ppb to 32?±?4 ppb for ADD, from 19?±?5 ppb to 44?±?17 ppb for AED, from 11?±?6 ppb to 30?±?2 ppb for aT and from 14?±?1 ppb to 42?±?27 ppb for P, depending on the sample type. As exposure of veal calves to steroid hormones in their housing facilities might complicate decision-making on illegal hormone administration, inequitable slaughter of animals remains possible. Therefore, complete prohibition of wooden calf accommodation should be considered.  相似文献   

19.
DHOA (Di-n-hexyl-octanamide) is one of the alternative extractants to TBP (tri-n-butyl phosphate) known for the extraction of uranium from moderate nitric acid medium without significant extraction of the fission products. Analytical application of DHOA was explored to develop a methodology for determination of trace metallic constituents in uranium based nuclear materials. This involved the separation of uranium matrix by 1.1 M DHOA-dodecane followed by the analysis of the raffinate for trace constituents by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). A systematic study showed that four contacts of 1.1 M DHOA-dodecane were required for quantitative extraction of U from 4 M HNO3 feed for the sample size of 1 g in 10 mL. The feasibility of using DHOA for extraction of U from trace metallic constituents in U based fuel materials without losing trace quantities of analytes of interest was studied by using synthetic samples after appropriate spiking of common impurities and critical elements at their required specification limits (common elements—5 ppm, critical elements—1 ppm). A systematic study was carried out to compare the analytical performance of DHOA with TBP, which revealed that DHOA could successfully be employed for the determination of 19 trace constituents with lower estimation limits of 5 ppm for common impurities and 1 ppm for critical elements.  相似文献   

20.
Summary Food samples were analyzed for uranium by neutron activation analysis. The concentration of U in 20 samples was above the detection limit and it varied from 0.7 to 59 ppb. The lowest detection limit achievable with the method is 1 ppb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号