首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hexacyanoferrate(III) reacts with [FeII(meso)(CH3CN)2](ClO4)2.2CH3CN (meso=5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) in acetonitrile/water mixture producing the title complex, where three [Fe(meso)]2+ units are connected by two [Fe(CN)6](3-) anions. Molecular modeling (MM+) shows a fairly linear molecule and M?ssbauer data are consistent with two terminal pentacoordinated low spin iron(II)-meso units linked to one hexacoordinated low spin iron(II)-meso through two hexacoordinated low spin iron(III) units. Spectroscopic characterization showed a typical mixed-valence charge transfer band and the degree of electron coupling was calculated to be H(AB)=678 cm(-1). Magnetic properties exhibited an antiferromagnetic exchange interaction between the iron(III) ions with a coupling constant J= -44 cm(-1).  相似文献   

3.
基于DFT-BS方法,在不同泛函方法和基组下计算[CuIIGdIII{pyCO(OEt)py C(OH)(OEt)py}3]2+及3d-Gd异金属配合物的磁耦合常数,结果表明,PBE0/TZVP(Gd为SARC-DKH-TZVP)水平可用于描述其磁学性质。顺磁中心CuII、GdIII与桥联配位氧原子间存在较强的轨道相互作用,其磁轨道主要由GdIII的4fz3、4fz(x2-y2)轨道、CuII的3dx2-y2轨道和桥联配位原子O的p轨道组成。顺磁中心CuII离子以自旋离域作用为主,GdIII离子以自旋极化作用为主,顺磁中心CuII自旋离域作用对桥联氧原子的影响大于顺磁中心GdIII的自旋极化作用。在同结构3d-Gd配合物中,随着MII离子未成对电子的增加,顺磁中心间自旋密度平方差越大,顺磁中心MII和GdIII之间的反铁磁性贡献越大,其磁耦合常数越小。  相似文献   

4.
Two new pentadentate, pendent arm macrocyclic ligands of the type 1-alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane where alkyl represents an isopropyl, (L(Pr))(2-), or an ethyl group, (L(Et))(2-), have been synthesized. It is shown that they bind strongly to ferric ions generating six-coordinate species of the type [Fe(L(alk))X]. The ground state of these complexes is governed by the nature of the sixth ligand, X: [Fe(III)(L(Et))Cl] (2) possesses an S = 5/2 ground state as do [Fe(III)(L(Et))(OCH(3))] (3) and [Fe(III)(L(Pr))(OCH(3))] (4). In contrast, the cyano complexes [Fe(III)(L(Et))(CN)] (5) and [Fe(III)(L(Pr))(CN)] (6) are low spin ferric species (S = 1/2). The octahedral [FeNO](7) nitrosyl complex [Fe(L(Pr))(NO)] (7) displays spin equilibrium behavior S = 1/2<==>S = (3)/(2) in the solid state. Complexes [Zn(L(Pr))] (1), 4.CH(3)OH, 5.0.5toluene.CH(2)Cl(2), and 7.2.5CH(2)Cl(2) have been structurally characterized by low-temperature (100 K) X-ray crystallography. All iron complexes have been carefully studied by zero- and applied-field M?ssbauer spectroscopy. In addition, Sellmann's complexes [Fe(pyS(4))(NO)](0/1+) and [Fe(pyS(4))X] (X = PR(3), CO, SR(2)) have been studied by EPR and M?ssbauer spectroscopies and DFT calculations (pyS(4) = 2,6-bis(2-mercaptophenylthiomethyl)pyridine(2-)). It is concluded that the electronic structure of 7 with an S = 1/2 ground state is low spin ferrous (S(Fe) = 0) with a coordinated neutral NO radical (Fe(II)-NO) whereas the S = 3/2 state corresponds to a high spin ferric (S(Fe) = 5/2) antiferromagnetically coupled to an NO(-) anion (S = 1). The S = 1/2<==>S = 3/2 equilibrium is then that of valence tautomers rather than that of a simple high spin<==>low spin crossover.  相似文献   

5.
Treatment of [RuCl(2)(DMSO)(4)] with 2-aminoethanethiol (Haet) in ethanol gave a dicationic triruthenium complex, [Ru[Ru(aet)(3)](2)]Cl(2) ([1]Cl(2)). Complex [1]Cl(2) was also obtained by treatment of RuCl(3).nH(2)O with excess Haet in water. When [1](2+) was chromatographed on a cation-exchange column of SP-Sephadex C-25, meso (DeltaLambda) and racemic (DeltaDelta/LambdaLambda) isomers of the corresponding tricationic complex, [Ru[Ru(aet)(3)](2)](3+) ([2](3+)), were eluted with aqueous NaNO(3). The racemic isomer of [2](3+) was optically resolved into DeltaDelta and LambdaLambda isomers by using [Sb(2)(R,R-tartrato)(2)](2-) as a resolving agent. The molecular structures of DeltaLambda- and DeltaDelta/LambdaLambda-[2](NO(3))(3) were determined by X-ray crystallography. In these complexes, the central Ru atom is coordinated by six thiolato groups from two terminal fac-(S)-[Ru(aet)(3)] units in an octahedral geometry, forming a linear-type S-bridged triruthenium structure. The spectroelectrochemical studies on the electronic absorption and CD spectra, together with the electrochemical studies, demonstrated that [1](2+) and [2](3+) are interconvertible with each other through a one-electron redox process, retaining the chirality of the triruthenium structure. Their electronic structures were investigated on the basis of EPR and magnetic susceptibility measurements, which indicated that [1](2+) and [2](3+) have spin ground states of S(t) = 0 and S(t) = 1/2, respectively. The corresponding L-cysteinato complex, [Ru[Ru(L-cys-N,S)(3)](2)](3-), which was formed from RuCl(3).nH(2)O and excess L-cysteine (L-H(2)cys) in water followed by air oxidation, is also presented.  相似文献   

6.
Density functional theory (DFT) calculations on trans-dioxo metal complexes containing saturated amine ligands, trans-[M(O)2(NH3)2(NMeH2)2]2+ (M=Fe, Ru, Os), were performed with different types of density functionals (DFs): 1) pure generalized gradient approximations (pure GGAs): PW91, BP86, and OLYP; 2) meta-GGAs: VSXC and HCTH407; and 3) hybrid DFs: B3LYP and PBE1PBE. With pure GGAs and meta-GGAs, a singlet d2 ground state for trans-[Fe(O)2(NH3)2(NMeH2)2]2+ was obtained, but a quintet ground state was predicted by the hybrid DFs B3LYP and PBE1PBE. The lowest transition energies in water were calculated to be at lambda approximately 509 and 515 nm in the respective ground-state geometries from PW91 and B3LYP calculations. The nature of this transition is dependent on the DFs used: a ligand-to-metal charge-transfer (LMCT) transition with PW91, but a pi(Fe-O)-->pi*(Fe-O) transition with B3LYP, in which pi and pi* are the bonding and antibonding combinations between the dpi(Fe) and ppi(O(2-)) orbitals. The FeVI/V reduction potential of trans-[Fe(O)2(NH3)2NMeH2)2]2+ was estimated to be +1.30 V versus NHE based on PW91 results. The [Fe(qpy)(O)2](n+) (qpy=2,2':6',2':6',2':6',2'-quinquepyridine; n=1 and 2) ions, tentatively assigned to dioxo iron(V) and dioxo iron(VI), respectively, were detected in the gas phase by high-resolution ESI-MS spectroscopy.  相似文献   

7.
A new asymmetrically coordinated bis-trinuclear iron(III) cluster containing a [Fe(3)O](7+) core has been synthesized and structurally, magnetically, and spectroscopically characterized. [Fe(6)Na(2)O(2)(O(2)CPh)(10)(pic)(4)(EtOH)(4)(H(2)O)(2)](ClO(4))(2).2EpsilontOH (1.2EpsilontOH) crystallizes in the P space group and consists of two symmetry-related {Fe(3)O](7+) subunits linked by two Na(+) cations. Inside each [Fe(3)O](7+) subunit, the iron(III) ions are antiferromagnetically coupled, and their magnetic exchange is best described by an isosceles triangle model with two equal (J) and one different (J ') coupling constants. On the basis of the H = -2SigmaJ(ij)S(i)S(j) spin Hamiltonian formalism, the two best fits to the data yield solutions J = -27.4 cm(-1), J ' = -20.9 cm(-1) and J = -22.7 cm(-1), J ' = -31.6 cm(-1). The ground state of the cluster is S = (1)/(2). X-band electron paramagnetic resonance (EPR) spectroscopy at liquid-helium temperature reveals a signal comprising a sharp peak at g approximately 2 and a broad tail at higher magnetic fields consistent with the S = (1)/(2) character of the ground state. Variable-temperature zero-field and magnetically perturbed M?ssbauer spectra at liquid-helium temperatures are consistent with three antiferromagnetically coupled high-spin ferric ions in agreement with the magnetic susceptibility and EPR results. The EPR and M?ssbauer spectra are interpreted by assuming the presence of an antisymmetric exchange interaction with |d| approximately 2-4 cm(-1) and a distribution of exchange constants J(ij).  相似文献   

8.
The electronic structures of four members of the electron-transfer series [Fe2(1L)4]n (n = 2-, 1-, 0, 1+) have been elucidated in some detail by electronic absorption, IR, X-band electron paramagnetic resonance (EPR), and M?ssbauer spectroscopies where (1L)(2-) represents the ligand 1,2-bis(4-tert-butylphenyl)-1,2-ethylenedithiolate(2-) and (1L*)- is its pi-radical monoanion. It is conclusively shown that all redox processes are ligand-centered and that high-valent iron(IV) is not accessible. The following complexes have been synthesized: [FeIII2(1L*)2(1L)2]0 (1), [FeIII2(2L*)2(2L)2].2CH2Cl2 (1') where (2L)(2-) is 1,2-bis(p-tolyl)-1,2-ethylenedithiolate(2-) and (2L*)- represents its pi-radical monoanion, [Cp2Co][FeIII2(1L*))(1L)3].4(toluene).0.5Et2O (2), and [Cp2Co]2[FeIII2(1L)4].2(toluene) (3). The crystal structures of 1' and 2 have been determined by single-crystal X-ray crystallography at 100 K. The ground states of complexes have been determined by temperature-dependent magnetic susceptibility measurements and EPR spectroscopy: 1' and 1 are diamagnetic (S(t) = 0); 2 (S(t) = 1/2); 3 (S(t) = 0); the monocation [Fe(III)2(1L*)3(1L)]+ possesses an S(t) = 1/2 ground state (S(t) = total spin ground state of dinuclear species). All species contain pairs of intermediate-spin ferric ions (S(Fe) = 3/2), which are strongly antiferromagnetically coupled (H = -2JS(1).S(2), where S1 = S2 = 3/2 and J = approximately -250 cm(-1)).  相似文献   

9.
Seven new bis(o-iminosemiquinonato)copper(II) complexes, 1- 5, 1a, 1b, derived from differently substituted N-phenyl-2-aminophenol-based ligands, are described. Their crystal structures were determined by X-ray diffraction, and their electronic structures were established by various physical methods including electron paramagnetic resonance and variable-temperature (2-290 K) susceptibility measurements. Like complex 6, which was reported recently by us, all complexes exhibit an S t = (1)/ 2 ground state, based on the "isolated" copper(II)-spin character resulting from the dominating antiferromagnetic spin coupling between the two radicals; the ground-state electronic configuration can thus be designated as (increasing, increasing, decreasing)[R-Cu-R]. In addition, broken spin symmetry density functional solutions have been obtained. From the set of unrestricted canonical Kohn-Sham orbitals, the magnetic orbitals have been identified. The identification procedure is based on the nonvanishing overlap integrals between the space parts of orbitals occupied by electrons of opposite spin. The theoretically determined magnetic orbitals support the spin configurations suggested by the experiments. Electrochemical measurements (cyclic voltammetry and square-wave voltammetry) indicate ligand-centered redox processes. Complex 1 is found to be the best catalyst among the Cu(II) complexes for oxidation of primary alcohols with aerial oxygen as the sole oxidant to afford aldehydes under mild conditions. Thus, the function of the copper-containing enzyme Galactose Oxidase has been mimicked. Kinetic measurements in conjunction with electron paramagnetic resonance and electronic spectral studies have been used to decipher the catalytic oxidation process. A ligand-derived redox activity has been proposed as a mechanism for the aerial oxidation of primary alcohols.  相似文献   

10.
The syntheses, crystal structures, magnetochemical characterization, and theoretical calculations are reported for three new iron clusters [Fe 6O 2(NO3) 4(hmp) 8(H 2O) 2](NO3)2 (1), [Fe4(N3)6(hmp)6] (2), and [Fe8O3(OMe)(pdm)4(pdmH) 4(MeOH)2](ClO4)5 (3) (hmpH=2-(hydroxymethyl)pyridine; pdmH2=2,6-pyridinedimethanol). The reaction of hmpH with iron(III) sources such as Fe(NO3) 3.9H2O in the presence of NEt 3 gave 1, whereas 2 was obtained from a similar reaction by adding an excess of NaN3. Complex 3 was obtained in good yield from the reaction of pdmH 2 with Fe(ClO4)3.6H2O in MeOH in the presence of an organic base. The complexes all possess extremely rare or novel core topologies. The core of 1 comprises two oxide-centered [Fe3(mu3-O)](7+) triangular units linked together at two of their apexes by two sets of alkoxide arms of hmp(-) ligands. Complex 2 contains a zigzag array of four Fe (III) atoms within an [Fe4(mu-OR) 6](6+) core, with the azide groups all bound terminally. Finally, complex 3 contains a central [Fe 4(mu4-O)](10+) tetrahedron linked to two oxide-centered [Fe3(mu3-O)](7+) triangular units. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-3 in the 5.0-300 K range. Fitting of the obtained magnetization versus field (H) and temperature (T) data by matrix diagonalization and including only axial anisotropy (zero-field splitting, ZFS) established that 1 possesses an S=3 ground-state spin, with g=2.08, and D=-0.44 cm(-1). The magnetic susceptibility data for 2 up to 300 K were fit by matrix diagonalization and gave J1=-9.2 cm(-1), J2=-12.5 cm(-1), and g=2.079, where J 1 and J 2 are the outer and middle nearest-neighbor exchange interactions, respectively. Thus, the interactions between the Fe(III) centers are all antiferromagnetic, giving an S=0 ground state for 2. Similarly, complex 3 was found to have an S=0 ground state. Theoretically computed values of the exchange constants in 2 were obtained with DFT calculations and the ZILSH method and were in good agreement with the values obtained from the experimental data. Exchange constants obtained with ZILSH for 3 successfully rationalized the experimental S = 0 ground state. The combined work demonstrates the ligating flexibility of pyridyl-alcohol chelates and their usefulness in the synthesis of new polynuclear Fex clusters without requiring the copresence of carboxylate ligands.  相似文献   

11.
The trinuclear and the tetranuclear complexes [[iPrtacnCr(CN)3]2[Ni(cyclam)]](NO3)2.5H2O 1 (cyclam = 1,4,8,11-tetraazacyclotetradecane, iPrtacn = 1,4,7-tris-isopropyl-1,4,7-triazacyclononane) and [[iPrtacnCr(CN)3Ni(Me2bpy)2]2](ClO4)4.2CH3CN 2 (Me2bpy = 4,4-dimethyl-2,2-bipyridine) were synthesized by reacting (iPrtacn)Cr(CN)3 with [Ni(cyclam)](NO3)2 and [Ni(Me2bpy)2(H2O)2](ClO4)2, respectively. The crystallographic structure of the two compounds was solved. The molecular structure of complex 1 consists of a linear Cr-Ni-Cr arrangement with a central Ni(cyclam) unit surrounded by two Cr(iPrtacn)(CN)3 molecules through bridging cyanides. Each peripheral chromium complex has two pending CN ligands. Complex 2 has a square planar arrangement with the metal ions occupying the vertices of the square. Each Cr(iPrtacn)(CN)3 molecule has two bridging and one non-bridging cyanide ligands. The magnetic properties of the two complexes were investigated by susceptibility vs. temperature and magnetization vs. field studies. As expected from the orthogonality of the magnetic orbitals between Cr(III) (t2g3) and Ni(II) (e(g)2) metal ions, a ferromagnetic exchange interaction occurs leading to a spin ground states S = 4 and 5 for 1 and 2, respectively. The magnetization vs. field studies at T = 2, 3 and 4 K showed the presence of a magnetic anisotropy within the ground spin states leading to zero-field splitting parameters obtained by fitting the data D4 = 0.36 cm(-1) and D5 = 0.19 cm(-1) (the indices 4 and 5 refer to the ground states of complexes 1 and 2, respectively). In order to quantify precisely the magnitude of the axial (D) and the rhombic (E) anisotropy parameters, High-field high frequency electron paramagnetic resonance (HF-HFEPR) experiments were carried out. The best simulation of the experimental spectra (at 190 and 285 GHz) gave the following parameters for 1: D4 = 0.312 cm(-1), E4/D4 = 0.01, g4x = 2.003, g4y = 2.017 and g4z = 2.015. For complex 2 two sets of parameters could be extracted from the EPR spectra because a doubling of the resonances were observed and assigned to the presence of complexes with slightly different structures at low temperature: D5 = 0.154 (0.13) cm(-1), E5/D5 = 0.31 (0.31) cm(-1), g4x = 2.04 (2.05), g4y = 2.05 (2.05) and g4z = 2.03 (2.02). The knowledge of the magnetic anisotropy parameters of the mononuclear Cr(iPrtacn)(CN)3, Ni(cyclam)(NCS)2 and Ni(bpy)2(NCS)2 complexes by combining HF-HFEPR studies and calculation using a software based on the angular overlap model (AOM) allowed to determine the orientation of the local D tensors of the metal ions forming the polynuclear complexes. We, subsequently, show that the anisotropy parameters of the polynuclear complexes computed from the projection of the local tensors are in excellent agreement with the experimental ones extracted from the EPR experiments.  相似文献   

12.
Kallies B  Meier R 《Inorganic chemistry》2001,40(13):3101-3112
The metal-donor atom bonding along the series of 3d[M(H2O)6](3+) ions from Sc(3+) to Fe(3+) has been investigated by density-functional calculations combined with natural localized bond orbital analyses. The M-OH(2) bonds were considered as donor-acceptor bonds, and the contributions coming from the metal ion's 3d sigma-, 3d pi-, and 4s sigma-interactions were treated individually. In this way, the total amount of charge transferred from the water oxygen-donor atoms toward the appropriate metal orbitals could be analyzed in a straightforward manner. One result obtained along these lines is that the overall extent of ligand-to-metal charge transfer shows a strong correlation to the hydration enthalpies of the aqua metal ions. If the contributions to the total ligand-to-metal ion charge transfer are divided into sigma- and pi-contributions, it turns out that Cr(3+) is the best sigma-acceptor, but its pi-accepting abilities are the weakest along the series. Fe(3+) is found to be the best pi-acceptor among the 3d hexaaqua ions studied. Its aptitude to accept sigma-electron density is the second weakest along the series and only slightly higher than that of Sc(3+) (the least sigma-acceptor of all ions) because of the larger involvement of the Fe(3+) 4s orbital in sigma-bonding. The strengths of the three types of bonding interactions have been correlated with the electron affinities of the different metal orbitals. Deviations from the regular trends of electron affinities along the series were found for those [M(H2O)6](3+) ions that are subject to Jahn-Teller distortions. In these cases (d(1) = [Ti(H2O)6](3+), d(2) = [V(H2O)6](3+), and d(4) = [Mn(H2O)6](3+)), ligand-to-metal charge transfer is prevented to go into those metal orbitals that contain unpaired d electrons. A lowering of the complex symmetry is observed and coupled with the following variations: The Ti(3+)- and V(3+)-hexaaqua ions switch from T(h)() to C(i)() symmetry while the Mn(3+)-hexaaqua ion moves to D(2)(h)() symmetry. The loss of orbital overlap leading to a diminished ligand-to-metal charge transfer toward the single occupied metal orbitals is compensated by amplified bonding interactions of the ligand orbitals with the unoccupied metal orbitals to some extent.  相似文献   

13.
The nature of chemical bonds in a ferredoxin‐type [2Fe–2S] cluster has been investigated on the basis of natural orbitals and several bond indices developed in Parts I and II of this study. The broken‐symmetry hybrid density functional theory (BS‐HDFT) with spin projection approach has been applied to elucidate the natural orbitals and occupation numbers for a model compound [Fe2S2(SCH3)4] (1), which is used to calculate the indices. The molecular structure, vibration frequencies, electronic structures, and magnetic properties in both oxidized and reduced forms of 1 have been calculated and compared with the experimental values. The optimized molecular structures after approximate spin projection have been in good agreement with experimental data. The structure changes upon one‐electron reduction have been slight (<0.1 Å) and only limited around one side of the Fe atom. Raman and infrared (IR) spectra have been calculated, and their vibration modes have been assigned using the bridging 34S isotope substitution. Their magnetic properties have been examined in terms of spin Hamiltonians that contain exchange interactions and double exchange interactions. The BS‐HDFT methods have provided the magnetic parameters; i.e., effective exchange integral (J) values and valence delocalization (B) values, which agree with the experimental results. It is found that large charge transfer (CT) from the bridging sulfur to the iron atoms has led to the strong antiferromagnetic interactions between iron atoms. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

14.
Structurally characterised 2,5-bis(2-hydroxyphenyl)pyrazine (H2L) can be partially or fully deprotonated to form the complexes [(acac)2Ru(mu-L)Ru(acac)2], [1], acac = acetylacetonato = 2,4-pentanedionato, [(pap)2Ru(mu-L)Ru(pap)2](ClO4)2, [2](ClO4)2, pap = 2-phenylazopyridine, or [(pap)2Ru(HL)](ClO4), [3](ClO4). Several reversible oxidation and reduction processes were observed in each case and were analysed with respect to oxidation state alternatives through EPR and UV-VIS-NIR spectroelectrochemistry. In relation to previously reported compounds with 2,2'-bipyridine as ancillary ligands the complex redox system [1]n is distinguished by a preference for metal-based electron transfer whereas the systems [2]n and [3]n favour an invariant Ru(II) state. Accordingly, the paramagnetic forms of [1]n, n = -, 0, +, exhibit metal-centred spin whereas the odd-electron intermediates [2]+, [2](3+) and [3] show radical-type EPR spectra. A comparison with analogous complexes involving the 3,6-bis(2-oxidophenyl)-1,2,4,5-tetrazine reveals the diminished pi acceptor capability of the pyrazine-containing bridge.  相似文献   

15.
The ground states of FeS(2) and FeS(2)(-), and several low-lying excited electronic states of FeS(2) that are responsible for the FeS(2)(-) photoelectron spectrum, are calculated. At the B3LYP level an open, quasi-linear [SFeS](-) conformation is found as the most stable structure, which is confirmed at the ab initio CASPT2 computational level. Both the neutral and the anionic unsaturated complexes possess high-spin electronic ground states. For the first time a complete assignment of the photoelectron spectrum of FeS(2)(-) is proposed. The lowest energy band in this spectrum is ascribed to an electron detachment from the two highest-lying 3dpi antibonding orbitals (with respect to the iron-sulfur bonding) of iron. The next-lowest experimental band corresponds to an electron removal from nonbonding, nearly pure sulfur orbitals. The two highest bands in the spectra are assigned as electron detachments from pi and sigma bonding mainly sulfur orbitals.  相似文献   

16.
Magnetization and electronic Raman data are presented for salts of the type Cs[Ga:Ti](SO(4))(2) x 12H(2)O, which enable a very precise definition of the electronic structure of the [Ti(OH(2))(6)](3+) cation. The magnetization data exhibit a spectacular deviation from Brillouin behavior, with the magnetic moment highly dependent on the strength of the applied field at a given ratio of B/T. This arises from unprecedented higher-order contributions to the magnetization, and these measurements afford the determination of the ground-state Zeeman coefficients to third-order. The anomalous magnetic behavior is a manifestation of Jahn-Teller coupling, giving rise to low-lying vibronic states, which mix into the ground state through the magnetic field. Electronic Raman measurements of the 1%-titanium(III)-doped sample identify the first vibronic excitation at approximately 18 cm(-1), which betokens a substantial quenching of spin-orbit coupling by the vibronic interaction. The ground-state Zeeman coefficients are strongly dependent on the concentration of titanium(III) in the crystals, and this can be modeled as a function of one parameter, representing the degree of strain induced by the cooperative Jahn-Teller effect. This study clearly demonstrates the importance that the Jahn-Teller effect can have in governing the magnetic properties of transition metal complexes with orbital triplet ground terms.  相似文献   

17.
Pure [Cu(XeF2)2](SbF6)2 was prepared by the reaction of Cu(SbF 6) 2 with a stoichiometric amount of XeF2 in anhydrous hydrogen fluoride (aHF) at ambient temperature. The reaction between Cu(SbF6)2 and XeF2 (1:4 molar ratio) in aHF yielded [Cu(XeF2)4](SbF6)2 contaminated with traces of Xe 2F 3SbF6 and CuF2. The 6-fold coordination of Cu(2+) in [Cu(XeF2)2](SbF6)2 includes two fluorine atoms from two XeF2 ligands and four fluorine atoms provided by four [SbF6](-) anions. The neighboring [Cu(XeF 2)2](2+) moieties are connected via two [SbF6] units, with the bridging fluorine atoms in cis positions, into infinite [Cu(eta(1)-XeF2)2](cis-eta(2)-SbF 6)2[Cu(eta(1)-XeF 2)2] chains. Because of the high electron affinity of Cu(2+), coordinated XeF2 shows the highest distortion (Xe-Fb=210.2(5) pm, Xe-Ft=190.6(5) pm) observed so far among all known [M(x+)(XeF2)n](A)x (A=BF4, PF6, etc.) complexes. The four equatorial coordination sites of the Cu(2+) ion in [Cu(XeF 2) 4](SbF6)2 are occupied by four XeF 2 ligands. Two fluorine atoms belonging to two [SbF6] units complete the Cu (2+) coordination environment. The neighboring [Cu(XeF2)4](2+) species are linked via one [SbF6] unit, with bridging fluorine atoms in trans positions, into linear infinite [Cu(eta(1)-XeF2)4](trans-eta(2)-SbF6)[Cu(eta(1)-XeF2)4] chains. To compensate for the remaining positive charge, crystallographically independent [SbF6](-) anions are located between the chains and are fixed in the crystal space by weak Xe...F(Sb) interactions.  相似文献   

18.
Li MX  Zhou X  Xia BH  Zhang HX  Pan QJ  Liu T  Fu HG  Sun CC 《Inorganic chemistry》2008,47(7):2312-2324
A series of ruthenium(II) complexes, [Ru(tcterpy)(NCS)3](4-) (0H), [Ru(Htcterpy)(NCS)3](3-) (1H), [Ru(H2tcterpy)(NCS)3](2-) (2H), and [Ru(H3tcterpy)(NCS)3](-) (3H) (tcterpy = 4,4',4'-tricarboxy-2,2':6',2'-terpyridine), are investigated theoretically to explore their electronic structures and spectroscopic properties. The geometry structures of the complexes in the ground and excited states are optimized by the density functional theory and single-excitation configuration interaction methods, respectively. The absorption and emission spectra of the complexes in gas phase and solutions (ethanol and water) are predicted at the TDDFT(B3LYP) level. The calculations indicate that the protonation effect slightly affects the geometry structures of the complexes in the ground and excited states but leads to significant change in the electronic structures. In cases of both absorptions and emissions, the energy levels of HOMOs and LUMOs for 0H-3H decrease dramatically as a result of the introduction of the COOH groups. The protonation much stabilizes the unoccupied orbitals with respect to the occupied orbitals. Thus, both the absorptions and emissions are red-shifted from 0H to 3H. The phosphorescence of 0H-3H are attributed to tcterpyridine --> d(Ru)/NCS ((3)MLCT/(3)LLCT) transitions. The solvent media can influence the molecular orbital distribution of the complexes; as a consequence, the spectra calculated in the presence of the solvent are in good agreement with the experimental results. The MLCT/LLCT absorptions of 0H in ethanol and water are red-shifted relative to that in the gas phase. However, the MLCT/LLCT absorptions of the protonated complexes (1H-3H) are blue-shifted in ethanol and water with respect to the gas phase. Similarly, the solvent effect causes a blue-shift of the phosphorescent emission for 0H-3H.  相似文献   

19.
In the recent years, a wide variety of transition metal complexes with the nitronyl radical ligands have been reported1,2. These systems display the various magnetic behaviors (ferro- or antiferro-magnetism) between the unpaired electrons on the radical ligands and on the paramagnetic metal ion center. However, few theoretical studies on the metal-radical complexes were reported and quite few are known about the nature of the exchange coupling interactions. In this work, we are interested i…  相似文献   

20.
First-principles electronic structure calculations within a gradient corrected density functional formalism have been carried out to investigate the electronic structure and magnetic properties of Pd(13) clusters. It is shown that a bilayer ground-state structure that can be regarded as a relaxed bulk fragment is most compatible with the experimental results from Stern-Gerlach measurements. An icosahedral structure, considered to be the ground state in numerous previous studies, is shown to be around 0.14 eV above the ground state. A detailed analysis of the molecular orbitals reveals the near degeneracy of the bilayer or icosahedral structures is rooted in the stabilization by p- or d-like cluster orbitals. The importance of low-lying spin states in controlling the electronic and magnetic properties of the cluster is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号