首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Critical values of the Eotvos number, which is half the Bond number, above which buoyancy induced drop detachment occurs, are estimated based on force balance equations available in the literature [Colloids Surf. A: Physicochem. Eng. Aspects 178 (2001) 249]. Since there are two significantly different expressions of the capillary retention force responsible for holding oil drops on a solid substrate in an aqueous phase, the critical dimensionless number is estimated with these two distinct equations. The differential equation defining the drop shape, with the constraints of the drop volume and the 'pinned' or 'receding' contact line, is numerically solved. The equilibrium drop shapes predicted are shown to match the experimentally observed variations in drop shape. From the numerical solution, it is observed that for interfacial tension (IFT) values lower than a certain limit for a given drop size, no numerically estimated drop shape can fulfil the drop volume constraint. Similarly, for the dimensionless number above a critical value, no shape can meet all the constraints. These critical Eotvos numbers are estimated, based on the above numerical approach, for initial contact angles measured in oil varying from 20 degrees to 90 degrees. It is found that the critical Eotvos numbers estimated from the numerical shape analysis are between the critical values estimated from the two force-balance equations. Near 90 degrees, the critical values estimated from the drop shape analysis matches the values from one of the force balance estimates, but merges with the critical values of the dimensionless number, estimated from the other force balance model near 10 degrees. From this analysis, it appears that a combination of the two equations for the capillary retention force is required, with one dominating when the contact angles are high, while the other applies for low values of the contact angle.  相似文献   

2.
The θ/2 method, a widely used technique on measuring the contact angle of a sessile drop, assumes that the drop profile is part of a sphere. However, the shape profile of a sessile drop is governed by the Young–Laplace equation and is different from a sphere, especially for drops with a large bound number (e.g. large volume or small surface tension). The spherical assumption, therefore, causes errors on evaluating the contact angles. The deviation of contact angle from the θ/2 method is evaluated from a theoretical calculation in this work. A simple means is given for correcting the measurement error. The corrected angle results from the drop volume, surface tension, liquid density and the contact angle from θ/2 method. An algorithm for finding the correct contact angle without knowing the density and surface tension is also given. At the end, two examples of pendant drops are given for the illustration.  相似文献   

3.
An analytical solution to the capillary equation of Young and Laplace is derived that allows determination of the static contact angle based on the volume of a sessile drop and the wetted area of the substrate. This solution does not require numerical integration to determine the drop profile and accounts for surface deformation due to gravitational effects. Calculation of the static contact angle by this method is remarkably simple and accurate when the contact angle is less than 30 degrees. A natural scaling arises in the solution, which provides indication of when a drop is small enough so as to neglect gravitational influences on the surface shape which, for small contact angles, is generally less than 1 microl. The technique described has the simplicity of the spherical cap approximation but remains accurate for any size of sessile drop.  相似文献   

4.
The stability of a single, solid, spherical particle attached to a liquid drop in an emulsion is discussed. Ignoring effects due to gravity and line tension, we calculate the energies required to either detach the particle from the drop or to engulf the particle within the drop. The stability of the attached particle is here defined as the smaller of these two energies. A simple formula is derived for the value of Young's angle which gives maximum stability for a given radius ratio of particle to detached drop. For maximum stability the particle should be preferentially wetted by the liquid forming the drop.  相似文献   

5.
超疏水表面上冷凝液滴发生弹跳的机制与条件分析   总被引:1,自引:0,他引:1  
使用液滴合并前后的体积和表面自由能守恒作为两个限制条件,确定了合并液滴的初始形状,即为偏离平衡态的亚稳态液滴,具有缩小其底半径而向平衡态液滴转变的推动力.进而分析了液滴变形过程中的推动力和三相线(TPCL)上的滞后阻力,建立了液滴变形的动态方程并进行了差分求解.如果液滴能够变形至底半径为0mm的状态,则根据该状态下液滴重心上移的速度确定液滴的弹跳高度.不同表面上冷凝液滴合并后的变形行为的计算结果表明,光滑表面上的液滴合并后,液滴只能发生有限的变形,一般都在达到平衡态之前就停止了变形,因此冷凝液滴不会发生弹跳;粗糙表面上的Wenzel态液滴的三相线上的滞后阻力更大,因而液滴更难以变形和弹跳;具有微纳二级结构表面上只润湿微米结构,但不润湿纳米结构的部分Wenzel态液滴能够变形至Cassie态,但没有明显的弹跳;只有在纳米或微纳二级结构表面上的较小Cassie态液滴合并后,液滴易于变形至底半径为0mm的状态并发生弹跳.因此,Cassie态合并液滴处于亚稳态,并且其三相线上的移动阻力很小,是导致冷凝液滴弹跳的关键因素.  相似文献   

6.
Experiments on sessile drops evaporating in a normal atmosphere without an applied thermal gradient are reported and compared with an available theoretical model. The liquids used are alkanes; water; and, more recently, polydimethylsiloxane oligomers. The substrates are silicon wafers, completely wetted by the liquid. Experiments with hanging drops allow us first to discard any influence of convection in the gas phase on the drop dynamics. The model assumes the process to be controlled by the stationary diffusion of the evaporating molecules in the gas phase. For alkanes and water, and in a limited range of drop sizes where gravity can be ignored, the model accounts very well for the dynamics of the drop radius, and rather well for the contact angle. This is no longer the case with the polydimethylsiloxane oligomers, where the very small contact angles require a more elaborated analysis of the drop edge. The text was submitted by the authors in English.  相似文献   

7.
The spreading of liquid drops on surfaces corrugated with micrometer-scale parallel grooves is studied both experimentally and numerically. Because of the surface patterning, the typical final drop shape is no longer spherical. The elongation direction can be either parallel or perpendicular to the direction of the grooves, depending on the initial drop conditions. We interpret this result as a consequence of both the anisotropy of the contact line movement over the surface and the difference in the motion of the advancing and receding contact lines. Parallel to the grooves, we find little hysteresis due to the surface patterning and that the average contact angle approximately conforms to Wenzel's law as long as the drop radius is much larger than the typical length scale of the grooves. Perpendicular to the grooves, the contact line can be pinned at the edges of the ridges, leading to large contact angle hysteresis.  相似文献   

8.
A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by a contact line and characterized by contact angle, contact radius and drop height. Diffusion-controlled evaporation of a sessile drop in an ambient gas is an important topic of interest because it plays a crucial role in many scientific applications such as controlling the deposition of particles on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, drop wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials in the last decades. This paper presents a review of the published articles for a period of approximately 120 years related to the evaporation of both sessile drops and nearly spherical droplets suspended from thin fibers. After presenting a brief history of the subject, we discuss the basic theory comprising evaporation of micrometer and millimeter sized spherical drops, self cooling on the drop surface and evaporation rate of sessile drops on solids. The effects of drop cooling, resultant lateral evaporative flux and Marangoni flows on evaporation rate are also discussed. This review also has some special topics such as drop evaporation on superhydrophobic surfaces, determination of the receding contact angle from drop evaporation, substrate thermal conductivity effect on drop evaporation and the rate evaporation of water in liquid marbles.  相似文献   

9.
Spreading of liquid drops over dry porous layers: complete wetting case   总被引:1,自引:0,他引:1  
Spreading of small liquid drops over thin dry porous layers is investigated from both theoretical and experimental points of view. Drop motion over a porous layer is caused by an interplay of two processes: (a) the spreading of the drop over already saturated parts of the porous layer, which results in an expanding of the drop base; (b) the imbibition of the liquid from the drop into the porous substrate, which results in a shrinkage of the drop base and an expanding of the wetted region inside the porous layer. As a result of these two competing processes, the radius of the drop goes through a maximum value over time. A system of two differential equations is derived to describe the evolution with time of radii of both the drop base and the wetted region inside the porous layer. This system includes two parameters: one accounts for the effective lubrication coefficient of the liquid over the wetted porous substrate and the other is a combination of permeability and effective capillary pressure inside the porous layer. Two additional experiments are used for an independent determination of these two parameters. The system of differential equations does not include any fitting parameter after these two parameters are determined. Experiments were carried out on the spreading of silicone oil drops over various dry microfiltration membranes (permeable in both normal and tangential directions). The time evolution of the radii of both the drop base and the wetted region inside the porous layer are monitored. All experimental data fell on two universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and of the wetted region inside the porous layer on dimensionless time. The predicted theoretical relationships are two universal curves accounting quite satisfactorily for the experimental data. According to our theory prediction, (i) the dynamic contact angle dependence on the same dimensionless time as before should be a universal function and (ii) the dynamic contact angle should change rapidly over an initial short stage of spreading and should remain a constant value over the duration of the rest of the spreading process. The constancy of the contact angle on this stage has nothing to do with hysteresis of the contact angle: there is no hysteresis in our system. These conclusions again are in good agreement with our experimental observations.  相似文献   

10.
The performance of a new algorithm developed to measure contact angle and surface tension of sessile drops is examined. To calculate the contact angle and surface tension, the new algorithm (ADSA-TD) requires the radius (contact or equatorial) and volume of two sessile drops of different sizes that are placed on the same surface. Initially, the algorithm was tested using synthetic drops (synthetic or theoretical drops are produced by numerical integration of the Laplace equation). The radii and volumes of synthetic drops were used as ADSA-TD inputs. The calculated contact angle (θ) and surface tension (γ) by ADSA-TD matched perfectly the assumed values of θ and γ used to produce the synthetic drops, confirming theoretically the validity of the new algorithm. In the next step, the sensitivity of the algorithm to input errors was examined. It was shown experimentally that both calculated contact angle and surface tension are affected by the errors in volume and radius. Besides the error in input values, it was shown that the size difference between the paired drops and the differences in their contact angles would affect the output of ADSA-TD. As it turns out, the calculated surface tension is so sensitive to the above factors that ADSA-TD does not appear to be promising as a surface tension measurement technique. However, ADSA-TD produced acceptable contact angle values as compared to measurements made by other proven techniques such as axisymmetric drop shape analysis-profile. Thus, ADSA-TD may be of interest as a contact angle measurement technique which does not require the liquid surface tension as input.  相似文献   

11.
Molecular dynamics simulations were used to study the wetting of nanogrooved PE and PVC polymer surfaces. The contact angles, equilibrium states, and equilibrium shapes of two nanosized water droplets were analyzed on surfaces with 1D-arranged periodic roughness of various dimensions. The composite solid-liquid contact, which is preferred in practical applications and in which a droplet rests on top of the surface asperities, was observed on the roughest PE surfaces, whereas water filled the similar but slightly deeper grooves on PVC surfaces. The transition from the wetted to composite contact regime occurred when the contact angle with a flat surface reached the value at which the apparent Wenzel and Cassie contact angles are equal. Droplets on grooved PE surfaces with the composite contact exhibited contact angles in agreement with Cassie's equation, but the increase in hydrophobicity on smoother surfaces with the wetted contact was less than expected from Wenzel's equation. The difference between the simulated and theoretical values decreased as the dimensions of the surface grooves increased. Only a slight increase or even a slight decrease in the contact angles was observed on the grooved PVC surfaces, owing to the less hydrophobic nature of the flat PVC surface. On both polymers, the nanodroplet assumed a spherical shape in the composite contact. Only minor anisotropy was observed in the wetted contact on PE surfaces, whereas even a highly anisotropic shape was seen on the grooved PVC surfaces. The contact angle in the direction of the grooves was smaller than that in the perpendicular direction, and the difference between the two angles decreased with the increasing size of the water droplet.  相似文献   

12.
The effect of disjoining pressure between a rigid spherical probe particle (attached to an AFM cantilever) and a liquid interface (e.g., oil/water or air/water) is treated in an analytic manner to describe the total force F exerted on the probe as a function of the distance X of the probe from the rigid substrate (AFM stage) on which the liquid interface resides. Two cases (i) a flat interface under gravity and (ii) a drop whose size is sufficiently small that gravity can be neglected have been examined. A simple numerical algorithm is given for computing F(X) (the AFM observable) from a given form for the disjoining pressure. Numerical results are displayed for electrostatic probe/interface interactions which reveal the linear compliance regime experimentally observed in AFM experiments on these systems. The slope of the linear compliance regime is shown to be a function of the properties of the interface (capillary length, particle radius, drop size, contact angle of drop on rigid substrate etc.). Copyright 2001 Academic Press.  相似文献   

13.
Currently, there is no conclusive evidence regarding the global equilibrium condition of vibrated drops. However, it is well-known that vibration of sessile drops effectively reduces the contact angle hysteresis. In this work, applying a recent methodology for evaluating the most-stable contact angle, we examined the impact of the type of excitation signal (random signal versus periodical signal) on the values of the most-stable contact angle for polymer surfaces. Using harmonic signals, the oscillation frequency affected the postvibration contact angle. Instead, the white noise signal enabled sessile drops to relax regardless of their initial configuration. In spite of that, the values of most-stable contact angle obtained with different signals mostly agreed. We concluded that not only the amount of relaxation can be important for relaxing a sessile drop but also the rate of relaxation. Together with receding contact angle, most-stable contact angle, measured with the proposed methodology, was able to capture the thermodynamic changes of "wetted" polymer surfaces.  相似文献   

14.
An efficient algorithm is developed to determine the three-dimensional shape of a deformable drop trapped under gravity in a constriction, employing an artificial evolution to a steady state. During the simulation, the drop surface is advanced using a rationally-devised normal "velocity", based on local deviation from the Young-Laplace equation and the adjacent solid shape, to approach the trapped drop shape. The artificial "time-dependent" evolution of the drop to the static, trapped shape requires that the free portions of the drop interface eventually satisfy the Young-Laplace equation, and the drop-solid contact portions of the drop interface conform to the solid surface. The significant advantage of this solution method is that a simple, numerically-efficient "velocity" is used to construct the evolution to the steady state; the coated areas where the drop is in near contact with solid boundaries of the constriction do not have to be specified a priori, but are found in the course of the solution. Alternative methods (e.g., boundary integral) based on realistic time-marching would be much more costly for determining the trapped state. Trapping conditions and drop shapes are studied for gravity-induced settling of a deformable drop into a three-dimensional constriction. For conditions near critical, where the trapped-drop steady state ceases to exist, severe surface-mesh distortions are treated by a combination of 'passive mesh stabilization', mesh relaxation and topological mesh transformations through node reconnections. For Bond numbers above a critical value, the drop is deformable enough to pass through the hole of the constriction, with no trapping. Critical Bond numbers are determined by linearly fitting minima of the root-mean-squared (rms) surface velocities versus corresponding Bond numbers greater than critical, and then extrapolating the Bond number to where the minimum rms velocity is zero (i.e., the drop becomes trapped). For ring and hyperbolic-tube constrictions, with axes parallel to the gravity vector, the results for trapped drops and critical Bond numbers are in close agreement with those obtained by the previous, highly-accurate axisymmetric method [1]. Also, the three-dimensional Young-Laplace and boundary-integral methods show good agreement for the static shape of a drop trapped in a tilted three-sphere constriction. For all constriction types studied, including circular rings, hyperbolic tubes and agglomerates of three and four spheres, the critical Bond number increases nearly linearly with an increase in the drop-to-hole size ratio. In contrast, the constriction type and tilt angle, which is the angle between the gravity vector and the normal to the plane of the constriction hole, have generally a weaker effect on the critical Bond number.  相似文献   

15.
The limiting inclination angle (slip angle), for which a two-dimensional water drop may be at equilibrium on a chemically heterogeneous surface, is exactly calculated for a variety of cases. The main conclusion is that, in the cases studied, the contact angles at the upper and lower contact line do not always simultaneously equal the receding and advancing contact angles, respectively. On a hydrophobic surface, the lowest contact angle (at the upper contact line) tends to be approximately equal to the receding contact angle, while the highest contact angle (at the lower contact line) may be much lower than the advancing contact angle. For hydrophilic surfaces, the opposite is true. These conclusions imply that the hysteresis range cannot in general be measured by analyzing the shape of a drop on an inclined plane. Also, the limiting inclination angle cannot in general be calculated from the classical equation based only on the advancing and receding contact angles.  相似文献   

16.
Drop shape techniques are used extensively for surface tension measurement. It is well-documented that, as the drop/bubble shape becomes close to spherical, the performance of all drop shape techniques deteriorates. There have been efforts quantifying the range of applicability of drop techniques by studying the deviation of Laplacian drops from the spherical shape. A shape parameter was introduced in the literature and was modified several times to accommodate different drop constellations. However, new problems arise every time a new configuration is considered. Therefore, there is a need for a universal shape parameter applicable to pendant drops, sessile drops, liquid bridges as well as captive bubbles. In this work, the use of the total Gaussian curvature in a unified approach for the shape parameter is introduced for that purpose. The total Gaussian curvature is a dimensionless quantity that is commonly used in differential geometry and surface thermodynamics, and can be easily calculated for different Laplacian drop shapes. The new definition of the shape parameter using the total Gaussian curvature is applied here to both pendant and constrained sessile drops as an illustration. The analysis showed that the new definition is superior and reflects experimental results better than previous definitions, especially at extreme values of the Bond number.  相似文献   

17.
The existence and shape of a cylindrical (infinitely long) liquid drop on a fiber of arbitrary radius are examined using a microscopic approach based on the interaction potentials between the molecules of the system. A differential equation for the drop profile was derived by the variational minimization of the total potential energy by taking into account the structuring of the liquid near the fiber. This equation was solved by quadrature, and the existence conditions and the shape of the drop were examined as functions of the radius of the fiber, microscopic contact angle theta(0), which the actual drop profile makes with the fiber, and a certain parameter, a, which depends on the interaction potential parameters. Angle theta(0) is defined in the nanoscale range near the leading edge where the interactions between the liquid and solid are strong. It differs from the macroscopically measured wetting angle (theta(m)) that represents the extrapolation of the profile outside the range of liquid-solid interaction to the solid surface. Expressions for both theta(0) and theta(m) are established in the paper. For any given fiber radius, the range of drop existence involves two domains in the plane theta(0) - a, separated by a critical curve a = a(c)(theta(0)). In the first domain, below the curve a = a(c)(theta(0)), the drop always exists and can have any height, h(m). In the second domain, above the curve a = a(c)(theta(0)), there is an upper limit of h, h(m1), such that drops with h(m) > h(m1) cannot exist. The shape of the drop depends on whether the point (theta(0), a) on the theta(0) - a plane is far from the critical curve or near to it. In the first case, the drop profile has generally a circular shape, with the center of the circle not located on the fiber axis, whereas in the second case the shape is "quasi planar", that is, most of the drop profile lies on a circle concentric with the fiber profile. Comparing the potential energies of a cylindrical drop on a fiber and a film of uniform thickness covering the fiber and having the same volume as the drop, the energetically preferred configuration was determined for various conditions. Considering the cylindrical drop as a limiting case of a clam-shell one, and the film as a limiting case of a barrel drop, the obtained analytical results could be employed to examine the barrel-drop-clam-shell-drop transformation (roll-up transition).  相似文献   

18.
在测定界面张力,特别是测定低界面张力的各种方法中,躺滴法占有相当重要的位置。但一般的躺滴法都要求获得赤道半径(图1中的x_e)数据.故躺滴与基底之间的接触角必须大于90°.这在低界面张力体系中常常难以实现,致使躺滴法的应用受到限制。本文提出一种新的躺滴法,它不依赖于接触角的大小,只需测定躺滴轮廓线上两个相关点的坐标,根据所给数值表即可计算出界面张力,从而为躺滴法应用于低界面张力,特别是  相似文献   

19.
Very small, discrete oil droplets can form at the solid-liquid interface. We demonstrate this effect through formation of decane droplets at the interface between an aqueous ethanol solution and silicon wafers that have been made hydrophobic through self-assembly of octadecyltrichlorosilane (OTS). The droplets have a lens-like shape; the shape is approximately a spherical cap with a contact angle < 25 degrees. The heights of the droplets are about 2-50 nm, and diameters at the three-phase boundary are about 100-600 nm in 25% ethanol solution. The size and contact angle can be varied by changing the ethanol concentration. The contact angle of the very small droplets (height < 20 nm) is similar to the contact angle of macroscopic droplets (height approximately equal to 1 mm), so the line tension is very small. The droplets are only stable for a few hours: they gradually lose mass, presumably through Ostwald ripening. The drop perimeter is not pinned during ripening but retreats across the solid. We form the droplets by direct adsorption from an emulsion; evidence for adsorption is obtained by comparing the drop volumes in bulk to the volumes at the interface. The droplet sizes are obtained by dynamic light scattering and atomic force microscopy.  相似文献   

20.
Surfactant solutions and porous substrates: spreading and imbibition   总被引:1,自引:0,他引:1  
In Section 1, spreading of small liquid drops over thin dry porous layers is investigated from both theoretical and experimental points of view [V.M. Starov, S.R. Kosvintsev, V.D. Sobolev, M.G. Velarde, S.A. Zhdanov, J. Colloid Interface Sci. 252 (2002) 397]. Drop motion over a porous layer is caused by an interplay of two processes: (a) the spreading of the drop over already saturated parts of the porous layer, which results in an expanding of the drop base, and (b) the imbibition of the liquid from the drop into the porous substrate, which results in a shrinkage of the drop base and an expanding of the wetted region inside the porous layer. As a result of these two competing processes, the radius of the drop goes through a maximum value over time. A system of two differential equations has been derived to describe the evolution with time of radii of both the drop base and the wetted region inside the porous layer. This system includes two parameters, one accounts for the effective lubrication coefficient of the liquid over the wetted porous substrate, and the other is a combination of permeability and effective capillary pressure inside the porous layer. Two additional experiments were used for an independent determination of these two parameters. The system of differential equations does not include any fitting parameter after these two parameters are determined. Experiments were carried out on the spreading of silicone oil drops over various dry microfiltration membranes (permeable in both normal and tangential directions). The time evolution of the radii of both the drop base and the wetted region inside the porous layer were monitored. All experimental data fell on two universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and of the wetted region inside the porous layer on dimensionless time. The predicted theoretical relationships are two universal curves accounting quite satisfactory for the experimental data. According to theory predictions [1]: (i) the dynamic contact angle dependence on the same dimensionless time as before should be a universal function, and (ii) the dynamic contact angle should change rapidly over an initial short stage of spreading and should remain a constant value over the duration of the rest of the spreading process. The constancy of the contact angle on this stage has nothing to do with hysteresis of the contact angle: there is no hysteresis in the system under investigation. These conclusions again are in good agreement with experimental observations [V.M. Starov, S.R. Kosvintsev, V.D. Sobolev, M.G. Velarde, S.A. Zhdanov, J. Colloid Interface Sci. 252 (2002) 397]. In Section 2, experimental investigations are reviewed on the spreading of small drops of aqueous SDS solutions over dry thin porous substrates (nitrocellulose membranes) in the case of partial wetting [S. Zhdanov, V. Starov, V. Sobolev, M. Velarde, Spreading of aqueous SDS solutions over nitrocellulose membranes. J. Colloid Interface Sci. 264 (2003) 481-489]. The time evolution was monitored of the radii of both the drop base and the wetted area inside the porous substrate. The total duration of the spreading process was subdivided into three stages-the first stage: the drop base expands until the maximum value of the drop base is reached; the contact angle rapidly decreases during this stage; the second stage: the radius of the drop base remains constant and the contact angle decreases linearly with time; the third stage: the drop base shrinks and the contact angle remains constant. The wetted area inside the porous substrate expends during the whole spreading process. Appropriate scales were used with a plot of the dimensionless radii of the drop base, of the wetted area inside the porous substrate, and the dynamic contact angle on the dimensionless time. Experimental data showed [S. Zhdanov, V. Starov, V. Sobolev, M. Velarde, Spreading of aqueous SDS solutions over nitrocellulose membranes. J. Colloid Interface Sci. 264 (2003) 481-489]: the overall time of the spreading of drops of SDS solution over dry thin porous substrates decreases with the increase of surfactant concentration; the difference between advancing and hydrodynamic receding contact angles decreases with the surfactant concentration increase; the constancy of the contact angle during the third stage of spreading has nothing to do with the hysteresis of contact angle, but determined by the hydrodynamic reasons. It is shown using independent spreading experiments of the same drops on nonporous nitrocellulose substrate that the static receding contact angle is equal to zero, which supports the conclusion on the hydrodynamic nature of the hydrodynamic receding contact angle on porous substrates. In Section 3, a theory is developed to describe a spontaneous imbibition of surfactant solutions into hydrophobic capillaries, which takes into account the micelle disintegration and the concentration decreasing close to the moving meniscus as a result of adsorption, as well as the surface diffusion of surfactant molecules [N.V. Churaev, G.A. Martynov, V.M. Starov, Z.M. Zorin, Colloid Polym. Sci. 259 (1981) 747]. The theory predictions are in good agreement with the experimental investigations on the spontaneous imbibition of the nonionic aqueous surfactant solution, Syntamide-5, into hydrophobized quartz capillaries. A theory of the spontaneous capillary rise of surfactant solutions in hydrophobic capillaries is presented, which connects the experimental observations with the adsorption of surfactant molecules in front of the moving meniscus on the bare hydrophobic interface [V.J. Starov, Colloid Interface Sci. 270 (2003)]. In Section 4, capillary imbibition of aqueous surfactant solutions into dry porous substrates is investigated from both theoretical and experimental points of view in the case of partial wetting [V. Straov, S. Zhdanov, M. Velarde, J. Colloid Interface Sci. 273 (2004) 589]. Cylindrical capillaries are used as a model of porous media for theoretical treatment of the problem. It is shown that if an averaged pore size of the porous medium is below a critical value, then the permeability of the porous medium is not influenced by the presence of surfactants at any concentration: the imbibition front moves exactly in the same way as in the case of the imbibition of the pure water. The critical radius is determined by the adsorption of the surfactant molecules on the inner surface of the pores. If an averaged pore size is bigger than the critical value, then the permeability increases with surfactant concentration. These theoretical conclusions are in agreement with experimental observations. In Section 5, the spreading of surfactant solutions over hydrophobic surfaces is considered from both theoretical and experimental points of view [V.M. Starov, S.R. Kosvintsev, M.G. Velarde, J. Colloid Interface Sci. 227 (2000) 185]. Water droplets do not wet a virgin solid hydrophobic substrate. It is shown that the transfer of surfactant molecules from the water droplet onto the hydrophobic surface changes the wetting characteristics in front of the drop on the three-phase contact line. The surfactant molecules increase the solid-vapor interfacial tension and hydrophilise the initially hydrophobic solid substrate just in front of the spreading drop. This process causes water drops to spread over time. The time of evolution of the spreading of a water droplet is predicted and compared with experimental observations. The assumption that surfactant transfer from the drop surface onto the solid hydrophobic substrate controls the rate of spreading is confirmed by experimental observations. In Section 6, the process of the spontaneous spreading of a droplet of a polar liquid over solid substrate is analyzed in the case when amphiphilic molecules (or their amphiphilic fragments) of the substrate surface layer are capable of overturning, resulting in a partial hydrophilisation of the surface [V.M. Starov, V.M. Rudoy, V.I. Ivanov, Colloid J. (Russian Academy of Sciences English Transaction) 61 (3) (1999) 374]. Such a situation may take place, for example, during contact of an aqueous droplet with the surface of a polymer whose macromolecules have hydrophilic side groups capable of rotating around the backbone and during the wetting of polymers containing surface-active additives or Langmuir-Blodgett films composed of amphiphilic molecules. It was shown that droplet spreading is possible only if the lateral interaction between neighbouring amphiphilic molecules (or groups) takes place. This interaction results in the tangential transfer of "the overturning state" to some distance in front of the advancing three-phase contact line making it partially hydrophilic. The quantitative theory describing the kinetics of droplet spreading is developed with allowance for this mechanism of self-organization of the surface layer of a substrate in the contact with a droplet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号