首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
[60]Fullerenated poly(2‐hydroxyethyl methacrylate)s containing 0.6–3.0 wt % C60 were synthesized. These polymers are soluble in methanol and N,N‐dimethylformamide (DMF). [60]Fullerenated poly(2‐hydroxyethyl methacrylate)s with higher C60 contents are only sparingly soluble in DMF and virtually insoluble in other organic solvents. A loading of 1.2 wt % C60 in poly(2‐hydroxyethyl methacrylate) does not greatly affect its miscibility with poly(N‐vinyl‐2‐pyrrolidone), poly(1‐vinylimidazole), and poly(4‐vinylpyridine). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1157–1166, 2002  相似文献   

2.
The solubility parameters of pure poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(2‐hydroxyethyl methacrylate/itaconic acid) [P(HEMA/IA)] hydrogels were determined by 20 solvents with various solubility parameters in swelling experiments. The solubility parameter of pure PHEMA was 26.93 ± 0.46 (MPa)1/2. The effect of mole percentages of itaconic acid (IA) in P(HEMA/IA) hydrogels on the solubility parameter was investigated. The measured values were compared to literature and solubility values theoretically determined by group contribution values of van Krevelen and Hoy. The incorporation of IA into the hydrogel system slightly increased the solubility parameter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1995–2003, 2002  相似文献   

3.
The peculiarities of segmental dynamics over the temperature range of ?140 to 180 °C were studied in polyurethane‐poly(2‐hydroxyethyl methacrylate) semi‐interpenetrating polymer networks (PU‐PHEMA semi‐IPNs) with two‐phase, nanoheterogeneous structure. The networks were synthesized by the sequential method when the PU network was obtained from poly(oxypropylene glycol) (PPG) and adduct of trimethylolpropane (TMP) and toluylene diisocyanate (TDI), and then swollen with 2‐hydroxyethyl methacrylate monomer with its subsequent photopolymerization. PHEMA content in the semi‐IPNs varied from 10 to 57 wt %. Laser‐interferometric creep rate spectroscopy (CRS), supplemented with differential scanning calorimetry (DSC), was used for discrete dynamic analysis of these IPNs. The effects of anomalous, large broadening of the PHEMA glass transition to higher temperatures in comparison with that of neat PHEMA, despite much lower Tg of the PU constituent, and the pronounced heterogeneity of glass transition dynamics were found in these networks. Up to 3 or 4 overlapping creep rate peaks, characterizing different segmental dynamics modes, have been registered within both PU and PHEMA glass transitions in these semi‐IPNs. On the whole, the united semi‐IPN glass transition ranged virtually from ?60 to 160 °C. As proved by IR spectra, some hybridization of the semi‐IPN constituents took place, and therefore the effects observed could be properly interpreted in the framework of the notion of “constrained dynamics.” The peculiar segmental dynamics in the semi‐IPNs studied may help in developing advanced biomedical, damping, and membrane materials based thereon. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 963–975, 2007  相似文献   

4.
Nanophase‐separated poly(2‐hydroxyethyl methacrylate)‐l‐polyisobutylene (PHEMA‐l‐PIB) amphiphilic conetworks were obtained by crosslinking α,ω‐bismethacrylate‐terminated polyisobutylene (PIB) via copolymerization with silylated 2‐hydroxyethyl methacylate, followed by the hydrolysis of the silylether groups. Morphology development of a sample containing 64% PIB was monitored by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small‐angle X‐ray scattering. For comparison, the morphology of a sample containing 53% PIB was investigated by AFM. The dry conetworks exhibited hydrophilic and hydrophobic phases with average 8–10‐nm domain sizes and were swellable in water as well as in heptane. Swelling amphiphilic conetworks with aqueous cadmium–chloride solution followed by exposure to H2S resulted in nanosized CdS clusters located in the amphiphilic conetworks, that is, for the first time, new inorganic–organic hybrid materials composed of CdS semiconducting nanocrystals and PHEMA‐l‐PIB amphiphilic conetworks were prepared. © 2001 John Wiley & Sons, Inc. J Polym Sci B Part B: Polym Phys 39: 1429–1436, 2001  相似文献   

5.
A novel heterofunctional initiator, synthesized from pentaerythritol in a three step reaction sequence with two ring opening polymerization (ROP) and two atom transfer radical polymerization (ATRP) initiating sites, was used to prepare A2B2 miktoarm star copolymers of poly(ε‐caprolactone), PεCL, with polystyrene, PS, poly(methyl methacrylate), PMMA, poly(dimethylaminoethyl methacrylate), PDMAEMA, and poly(2‐hydroxyethyl methacrylate), PHEMA. A2B miktoarm stars, A being PεCL or poly(δ‐valerolactone), PδVL and B PS were also prepared from ω,ω‐dihydroxy‐PS, synthesized from ω‐Br‐PS and serinol, by ROP of εCL or δVL. All polymers were characterized by size exclusion chromatography, 1H NMR spectroscopy, and membrane osmometry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5164–5181, 2007  相似文献   

6.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

7.
We demonstrated that density functional theory calculations provide a reliable and quantitative prediction of the trends in C? S bond dissociation energies using several model compounds as photoinitiator. On the basis of this information, we designed a possible photofunctional initiator for the polymerization of hydrophilic vinyl monomers. Photopolymerization of 2‐hydroxyethyl methacrylate (HEMA) hydrophilic monomer was carried out in ethanol initiated by 2‐(N,N‐diethyldithiocarbamyl)isobutyric acid (DTCA) under UV irradiation. We performed the first‐order time‐conversion plots in this polymerization system, and the straight line in the semilogarithmic coordinates indicated first order in monomer. The molecular weight of the poly(2‐hydroxyethyl methacrylate) (PHEMA) increased with increasing conversion. The molecular weight distribution (Mw/Mn) of the PHEMA was about 1.5. Methyl methacrylate (MMA) could also be polymerized in a living fashion with such a PHEMA precursor as a macroinitiator because PHEMA exhibited a dithiocarbamate (DC) group at its terminal end. This system could be applied to the architecture of amphiphilic block copolymers. It was concluded that these polymerization systems proceeded with controlled radical mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 76–82, 2004  相似文献   

8.
Nanostructure, glass transition dynamics and elastic properties were studied in the 3D nanodiamond‐containing composites based on polyurethane‐poly(2‐hydroxyethyl methacrylate) semi‐interpenetrating polymer networks (PU‐PHEMA semi‐IPNs), neat PU or PHEMA matrices. Nanodiamond (ND) content in the nanocomposites varied from 0.25 to 3 wt %. Combined differential scanning calorimetry/ laser‐interferometric creep rate spectroscopy/atomic force microscopy approach was utilized. A large impact of small 3D ND additives on PU‐PHEMA networks' dynamics and properties was revealed under conditions when an average inter‐particle distance L exceeds by far gyration radius Rg. The pronounced heterogeneity of glass transitions' dynamics and two opposite effects were observed. The main effect was a strong suppression of PHEMA glass transition dynamics at 90–180 °C, with the enhancement of creep resistance and threefold to sixfold increasing modulus of elasticity. The peculiarly crosslinked structure of nanocomposites, due to double covalent hybridization, resulted in low rheological percolation threshold, and a synergistic effect in dynamics was observed. Less pronounced effect of accelerating dynamics in the temperature region between β‐ and α‐transitions in PHEMA was associated with dynamics in domains with loosened molecular packing. The distinct physical limit for “anomalous” decreasing Tg is predicted in terms of the notion of the common segmental nature of α‐ and β‐relaxations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1696–1712, 2008  相似文献   

9.
The structural characterization and transport properties of blends of a commercial high molecular weight poly(?‐caprolactone) with different amounts of a montmorillonite‐poly(?‐caprolactone) nanocomposite containing 30 wt % clay were studied. Two different vapors were used for the sorption and diffusion analysis—water as a hydrophilic permeant and dichloromethane as anorganic permeant—in the range of vapor activity between 0.2 and 0.8. The blends showed improved mechanical properties in terms of flexibility and drawability as compared with the starting nanocomposites. The permeability (P), calculated as the product of the sorption (S) and the zero‐concentration diffusion coefficient (D0), showed a strong dependence on the clay content in the blends. It greatly decreased on increasing the montmorillonite content for both vapors. This behavior was largely dominated by the diffusion parameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1118–1124, 2002  相似文献   

10.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

11.
This article describes the synthesis and characterization of new amphiphilic polymer conetworks containing hydrophilic poly(2,3‐dihydroxypropyl methacrylate) or poly(ethylene glycol) methacrylate (PEGMA) and hydrophobic polyisobutylene chains. This conetworks were prepared by a two‐step polymer synthesis. In the first step, a cationic copolymer of isobutylene and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) was prepared. The isocyanate groups of the IB‐IDI random copolymer were subsequently transformed in situ to methacrylate (MA) groups in reaction with 2‐hydroxyethyl methacrylate (HEMA). In the second step, the resulting MA‐multifunctional PIB‐based crosslinker, PIB(MA)n, with an average functionality of approximately four per chain, was copolymerized with 2,3‐dihydroxypropyl methacrylate or poly(ethylene glycol) methacrylate by radical mechanism in tetrahydrofuran giving rise to amphiphilic conetworks containing 11–60 mol % of DHPMA or 10–12 mol % of PEGMA. The synthesized conetworks were characterized with solid‐state 13C‐NMR spectroscopy and differential scanning calorimetry. The amphiphilic nature of the conetworks was proved by swelling in both water and n‐heptane. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4074–4081, 2007  相似文献   

12.
This study was related to the investigation of the chemical fixation of carbon dioxide to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer‐to‐polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl) methyl methacrylate‐co‐ethyl acrylate] [poly(DOMA‐co‐EA)] from poly(glycidyl methacrylate‐co‐ethyl acrylate) [poly(GMA‐co‐EA)] and CO2, quaternary ammonium salts showed good catalytic activity. The films of poly(DOMA‐co‐EA) with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) blends were cast from N,N′‐dimethylformamide solution. The miscibility of the blends of poly(DOMA‐co‐EA) with PMMA or PVC have been investigated both by DSC and visual inspection of the blends. The optical clarity test and DSC analysis showed that poly(DOMA‐co‐EA) containing blends were miscible over the whole composition range. The miscibility behaviors were discussed in terms of Fourier transform infrared spectra and interaction parameters based on the binary interaction model. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1472–1480, 2001  相似文献   

13.
We investigated the chemical fixation of carbon dioxide (CO 2) to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer to polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl)methyl methacrylate‐co‐styrene] [poly(DOMA‐co‐St)] from the addition of CO 2 to poly(glycidyl methacrylate‐co‐styrene) [poly(GMA‐co‐St)], quaternary ammonium salts showed good catalytic activity at mild reaction conditions. The CO 2 addition reaction followed pseudo first‐order kinetics with the concentration of poly(GMA‐co‐St). In order to expand the applications of the CO 2 fixed copolymer, polymer blends of this copolymer with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) were cast from N,N′‐dimethylformamide (DMF) solution. Miscibility of blends of poly(DOMA‐co‐St) with PMMA or PVC have been investigated both by differential scanning calorimetry (DSC) and visual inspection of the blends, and the blends were miscible over the whole composition ranges. The miscibility behaviors were also discussed in terms of FT‐IR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Supertough poly(butylene terephthalate) (PBT)‐based blends were obtained by the melt blending of PBT with 0–30 wt % poly(ethylene‐co‐glycidyl methacrylate) (EGMA). The reaction between PBT and EGMA was detected by torque measurements. The particle size was almost constant with increasing EGMA content, and this indicated that compatibilization occurred. The minimum EGMA content for achieving supertoughness (i.e., an impact strength 16 times greater than that of PBT) was 20 wt %. The interparticle distance was the parameter controlling toughness in these PBT/EGMA blends. The dependence of the critical interparticle distance (τc) on the modulus of the dispersed phase appeared only at low τc values, and the primary dependence of τc on the ratio of the modulus of the matrix to the modulus of the rubbery dispersed phase was proposed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2236–2247, 2003  相似文献   

15.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

16.
Nonspecific interaction is a key parameter affecting the efficiency of proteins, nucleic acids or cell separation. Currently, many approaches to introduce antifouling properties to materials have been developed. Among these, surface modification with polymer brushes plays a prominent role. The aim of this study was to synthesize new magnetic microspheres grafted with poly(N,N‐dimethylacrylamide) (PDMA) that resist nonspecific protein adsorption. Monodisperse macroporous poly(2‐hydroxyethyl methacrylate) (PHEMA) microspheres, 4 μm in size, were synthesized by a multiple swelling polymerization method. To render the microspheres magnetic, iron oxide was precipitated inside the microsphere pores. Functional carboxyl groups, introduced by the hydrolysis of the 2‐(methacryloyl)oxyethyl acetate (HEMA‐Ac) comonomer, were used to react with propargylamine, followed by coupling of a chain transfer agent via an azide‐alkyne click reaction. PDMA was grafted from the PHEMA microspheres using reversible addition‐fragmentation chain transfer polymerization (RAFT), resulting in surfaces with more than 81 wt % PDMA attached. The successful modification of the microspheres was confirmed by XPS. The magnetic microspheres grafted with PDMA showed excellent antifouling properties as tested in bovine serum protein solutions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1036–1043  相似文献   

17.
Comb‐shaped graft copolymers with poly(methyl methacrylate) as a handle were synthesized by the macromonomer technique in two steps. First, polytetrahydrofuran acrylate (A‐PTHF), prepared by the living cationic ring‐opening polymerization of tetrahydrofuran, underwent homopolymerization with 1‐(ethoxycarbonyl)prop‐1‐yl dithiobenzoate as an initiator under 60Co γ irradiation at room temperature; Second, the handle of the comb‐shaped copolymers was prepared by the block copolymerization of methyl methacrylate with P(A‐PTHF) as a macroinitiator under 60Co γ irradiation. The two‐step polymerizations were proved to be controlled with the following evidence: the straight line of ln[M]0/[M] versus the polymerization time, the linear increase in the number‐average molecular weight with the conversion, and the relatively narrow molecular weight distribution. The structures of the P(A‐PTHF) and final comb‐shaped copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3367–3378, 2002  相似文献   

18.
Atom transfer radical polymerization with activators generated by electron transfer initiating/catalytic system (AGET ATRP) of 2‐hydroxyethyl methacrylate (HEMA) was carried out in inverse miniemulsion. Water‐soluble ascorbic acid as a reducing agent and mono‐ and difunctional poly(ethylene oxide)‐based bromoisobutyrate (PEO‐Br) as a macroinitiator were used in the presence of CuBr2/tris[(2‐pyridyl)methyl]amine (TPMA) and CuCl2/TPMA complexes. The use of poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide) as a polymer surfactant resulted in the formation of stable HEMA cyclohexane inverse dispersion and PHEMA colloidal particles. All polymerizations were well‐controlled, allowing for the preparation of well‐defined PEO‐PHEMA and PHEMA‐PEO‐PHEMA block copolymers with relatively high molecular weight (DP > 200) and narrow molecular weight distribution (Mw/Mn < 1.3). These block copolymers self‐assembled to form micellar nanoparticles being 10–20 nm in diameter with uniform size distribution, and aggregation number of ~10 confirmed by atomic force microscopy and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4764–4772, 2007  相似文献   

19.
《中国化学会会志》2017,64(6):612-617
We report a new, unique process for the design of poly(2‐hydroxyethyl methacrylate) (PHEMA )‐based hybrid materials, which involves the coating of PHEMA on TiO2 and TiO2 /Ag nanoparticle surface under visible light. New hybrid materials initiated under different conditions were prepared under visible light, which could be used for the theoretical design of nanohybrid materials. The hybrid materials thus prepared were characterized by Fourier transform infrared spectroscopy (FTIR ), transmission electron microscopy (TEM ), and thermogravimetric analysis (TGA ). The experimental results confirmed the successful synthesis of TiO2–PHEMA hybrid materials. Compared to other methods, the method reported here involving the direct combination of PHEMA on the TiO2 surface was simply catalyzed by visible light without the addition of initiators.  相似文献   

20.
An amphiphilic poly(ethylene oxide)‐block‐poly(dimethylsiloxane) (PEO–PDMS) diblock copolymer was used to template a bisphenol A type epoxy resin (ER); nanostructured thermoset blends of ER and PEO–PDMS were prepared with 4,4′‐methylenedianiline (MDA) as the curing agent. The phase behavior, crystallization, hydrogen‐bonding interactions, and nanoscale structures were investigated with differential scanning calorimetry, Fourier transform infrared spectroscopy, transmission electron microscopy, and small‐angle X‐ray scattering. The uncured ER was miscible with the poly(ethylene oxide) block of PEO–PDMS, and the uncured blends were not macroscopically phase‐separated. Macroscopic phase separation took place in the MDA‐cured ER/PEO–PDMS blends containing 60–80 wt % PEO–PDMS diblock copolymer. However, the composition‐dependent nanostructures were formed in the cured blends with 10–50 wt % PEO–PDMS, which did not show macroscopic phase separation. The poly(dimethylsiloxane) microdomains with sizes of 10–20 nm were dispersed in a continuous ER‐rich phase; the average distance between the neighboring microdomains was in the range of 20–50 nm. The miscibility between the cured ER and the poly(ethylene oxide) block of PEO–PDMS was ascribed to the favorable hydrogen‐bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3042–3052, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号