首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A simple and rapid reversed‐phase HPLC method for determination of rifaximin in rat serum and urine was developed. Separation of rifaximin from biological matrix was achieved by direct injection of rat serum and urine onto a restricted‐access medium, Supelco LC‐Hisep, a shielded hydrophobic stationary phase, using acetonitrile:water:acetic acid (18:82:0.1 v/v/v) as a mobile phase. The linear range was 0.10–20 µg/mL (r2 > 0.999, n = 6), intraday and interday variation was <6.10%. The limits of detection and quantification were 0.03 (signal‐to‐noise ratio >3) and 0.10 µg/mL (signal‐to‐noise ratio >10), respectively. The method was successfully applied to pharmacokinetic studies of rifaximin after an oral administration to rats. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A series of 6-(morpholinosulfonyl)quinoxalin-2(1H)-one based hydrazone, hydrazine, and pyrazole moieties were designed, synthesized, and evaluated for their in vitro antimicrobial activity. All the synthesized quinoxaline derivatives were characterized by IR, NMR (1H /13C), and EI MS. The results displayed good to moderate antimicrobial potential against six bacterial, and two fungal standard strains. Among the tested derivatives, six quinoxalin-2(1H)-one derivatives 4a, 7, 8a, 11b, 13, and 16 exhibited a significant antibacterial activity with MIC values (0.97–62.5 µg/mL), and MBC values (1.94–88.8 µg/mL) compared with Tetracycline (MICs = 15.62–62.5 µg/mL, and MBCs = 18.74–93.75 µg/mL), and Amphotericin B (MICs = 12.49–88.8 µg/mL, and MFC = 34.62–65.62 µg/mL). In addition, according to CLSI standards, the most active quinoxalin-2(1H)-one derivatives demonstrated bactericidal and fungicidal behavior. Moreover, the most active quinoxaline derivatives showed a considerable antibacterial activity with bactericidal potential against multi-drug resistance bacteria (MDRB) strains with MIC values ranged between (1.95–15.62 µg/mL), and MBC values (3.31–31.25 µg/mL) near to standard Norfloxacin (MIC = 0.78–3.13 µg/mL, and MBC = 1.4–5.32 µg/mL. Further, in vitro S. aureus DNA gyrase inhibition activity were evaluated for the promising derivatives and displayed potency with IC50 values (10.93 ± 1.81–26.18 ± 1.22 µM) compared with Ciprofloxacin (26.31 ± 1.64 µM). Interestingly, these derivatives revealed as good immunomodulatory agents by a percentage ranging between 82.8 ± 0.37 and 142.4 ± 0.98 %. Finally, some in silico ADME, toxicity prediction, and molecular docking simulation were performed and showed a promising safety profile with good binding mode.  相似文献   

3.
A sensitive and specific ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS‐MS) method for quantification of a newly developed anticancer agent NPD‐103 has been established. An aliquot of human plasma sample (200 µL) was spiked with 13C‐labeled paclitaxel (internal standard) and extracted with 1.3 mL of tert‐butyl methyl ether. NPD‐103 was quantitated on a C18 column with methanol–0.1% formic acid (75:25, v/v) as mobile phase using UPLC‐MS‐MS operating in positive electrospray ionization mode with a total run time of 3.0 min. For NPD‐103 at the concentrations of 1.0, 5.0 and 10.0 µg/mL in human plasma, the absolute extraction recoveries were 95.58, 102.43 and 97.77%, respectively. The linear quantification range of the method was 0.1–20.0 µg/mL in human plasma with linear correlation coefficients greater than 0.999. The intra‐ and inter‐day accuracy for NPD‐103 at 1.0, 5.0 and 10.0 µg/mL levels in human plasma fell into the ranges of 95.29–100.00% and 91.04–94.21%, and the intra‐ and inter‐day precisions were in the ranges of 8.96–11.79% and 7.25–10.63%, respectively. This assay is applied to determination of half‐life of NPD‐103 in human plasma. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode‐array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30 min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10−2–10.0 μg/mL for caffeic acid, 1.3 × 10−3–1.9 μg/mL for p‐hydroxycinnamic acid, 2.8 × 10−3–4.1 μg/mL for ferulic acid, and 2.7 × 10−3–4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1–1.0 ng/mL, and satisfactory recoveries (92.5–111.2%) and precisions (RSDs 1.1–9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods.  相似文献   

5.
An HPLC method permitting the simultaneous determination of fourteen analytes (phenylalkanoids and monoterpenoids) from the roots of Rhodiola rosea was developed. A separation was achieved within 35 min using C18 column material and a water–acetonitrile mobile phase, both containing a 0.05% phosphoric acid gradient system and a temperature of 53°C. The method was validated for linearity, repeatability, limits of detection and limits of quantification. The limits of detection and limits of quantification of 14 phenylalkanoids and monoterpenoids were found to be 0.20–1.0 and 0.5–3.5 µg/mL, respectively. The wavelengths used for quantification of phenylalkanoids and monoterpenoids with a diode array detector were 205, 220 and 251 nm. The method was used to analyze the roots of two species of Rhodiola and commercial extracts of R. rosea and provides preliminary evidence of phytochemical differences between North American and Eurasian populations of R. rosea. LC–mass spectrometry coupled with electrospray ionization (ESI) interface method is described for the identification of phenylalkanoids and monoterpenoids in various Rhodiola samples. This method involved the use of the [M + H]+, [M + NH4]+ and [M + Na]+ ions in the positive ion mode with extractive ion monitoring (EIM). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A high‐performance liquid chromatography (HPLC) method for assay of d ‐Lys6–GnRH contained in a microemulsion‐type formulation is described. The peptide is extracted from the microemulsion matrix and quantified using a two‐step gradient method. Separation from microemulsion compounds and potential peptide oxidation products was achieved on a Jupiter C18 column at 40°C, using a gradient of 10–35% CH3CN for peptide elution. The correlation of peak intensity measured at 220 nm and peptide concentration was linear over the range 2.5–60 µg/mL with a correlation coefficient of 0.9997 and a y‐intercept not significantly different from zero (p > 0.05). Intraday and interday variability of the assay was less than 5% for multiple injections of samples containing 7.5, 30 and 60 µg/mL. The lower limit of quantitation was calculated to be 0.38 µg/mL, and the lower limit of detection was 0.13 µg/mL. The assay was applied to samples that were stressed under physiological conditions (37°C, pH 7.4) over 4 days. Three degradation peaks were well resolved from the parent peptide, demonstrating the selectivity of the assay. Off‐line MALDI TOF mass spectrometry was applied to identify these degradation species as oxidation products of the peptide. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A simple, sensitive and rapid method has been developed for simultaneous separation and quantification of three different drugs: oxytocin (OT), norfloxacin (NOR) and diclofenac (DIC) sodium in milk samples using capillary electrophoresis (CE) with UV detection at 220 nm. Factors affecting the separation were pH, concentration of buffer and applied voltage. Separation was obtained in less than 9 min with sodium tetraborate buffer of pH 10.0 and applied voltage 30 kV. The separation was carried out from uncoated fused silica capillary with effective length of 50 cm with 75 µm i.d. The carrier electrolyte gave reproducible separation with calibration plots linear over 0.15–4.0 µg/mL for OT, 5–1000 µg/mL for NOR and 3–125 µg/mL for DIC. The lower limits of detection (LOD) were found to be 50 ng/mL for OT, and 1 µg/mL for NOR and DIC. The method was validated for the analysis of drugs in milk samples and pharmaceutical preparations with recovery of drugs within the range 96–100% with RSD 0.9–2.8%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A systematic Quality by Design approach was employed for developing an isocratic reversed‐phase liquid chromatographic technique for the estimation of ropinirole hydrochloride in bulk drug and pharmaceutical formulations. LiChrospher RP 18‐5 Endcapped column (25 cm × 4.6 mm id) at ambient temperature (25 ± 2°C) was used for the chromatographic separation of the drug. The screening of factors influencing chromatographic separation of the active pharmaceutical ingredient was performed employing fractional factorial design to identify the influential factors. Optimization of the selected factors was carried out using central composite design for selecting the optimum chomatographic conditions. The mobile phase employed was constituted of Solvent A/Solvent B (65:35 v/v) (Solvent A [methanol/0.05 M ammonium acetate buffer, pH 7, 80:20 v/v] and Solvent B [high performance liquid chromatography grade water]) and used at 0.6 mL/min flow rate, while UV detection was performed at 250 nm. Linearity was achieved in the drug concentration range 5–100 µg/mL (R= 0.9998) with limits of detection and quantification of 1.02 and 3.09 µg/mL, respectively. Method validation was performed as per ICH guidelines followed by forced degradation studies, which indicated good specificity of the developed method for detecting ropinirole hydrochloride and its possible degradation products in the bulk drug and pharmaceutical formulations.  相似文献   

9.
A capillary zone electrophoresis method was developed for the simultaneous determination of seven phenolic acids, including protocatechuic aldehyde ( 1 ), salvianolic acid C ( 2 ), rosmarinic acid ( 3 ), salvianolic acid A ( 4 ), danshensu ( 5 ), salvianolic acid B ( 6 ), and protocatechuic acid ( 7 ), in Danshen and related medicinal plants. A running buffer composed of 20 mM sodium tetraborate adjusted to pH 9.0, and containing 12 mM β‐cyclodextrin as modifier. Baseline separation was achieved within 17 min running at the voltage of 20 kV, temperature of 25°C and detection wavelength of 280 nm. The relative standard deviations of migration time ranged from 0.2 to 0.7% and the peak area ranged from 1.5 to 3.7% for the seven analytes, indicating the good repeatability of the proposed method. The method was extensively validated by evaluating the linearity (R2 ≥ 0.9992), limits of detection (0.14–0.36 μg/mL), limits of quantification (0.47–1.19 μg/mL), and recovery (96.0–102.6%). Under the optimum conditions, samples of Danshen and related medicinal plants were analyzed using the developed method with high separation efficiency.  相似文献   

10.

In this paper, a novel pipette tip micro-solid phase extraction based on molecularly imprinted polymer as a selective sorbent was developed and applied for extraction, pre-concentration and high-performance liquid chromatographic determination of trace amounts of malachite green (MG), rhodamine B (RB), methyl orange (MO) and acid red 18 (AR) dyes in seawater samples. Different parameters affecting the extraction efficiency such as type and volume of eluent solvent, sample volume, number of cycles of extraction and desorption, amount of sorbent and pH of the sample solution were evaluated using one-variable-at-a-time and response surface methodology. In order to optimize dyes extraction, seven factors in three levels were used for Box–Behnken experimental design. Under optimum extraction condition, pH of sample solution was 3.1 for MG, 3.0 for RB, 7.1 for MO and 6.1 for AR; volume of eluent solvent (HCl, 0.5 mol L−1) was 200 µL; volume of the sample solution was 10 mL (for MG) and 4 mL (for RB, MO and AR); the concentration of triton X-114 was 0.085 (MG), 0.10 (RB), 0.08 (MO) and 0.075 (AR) % v/v; the number of extraction cycles was 10 (MG), 6 (RB), 5 (MO) and 7 (AR); the number of elution cycles was 10, 6, 5 and 9, respectively, for MG, RB, MO and AR; NaCl concentration was 0.4 mol L−1; and amount of MIP was 2.0 mg for all dyes. The linear range of calibration curves was 0.5–250.0 µg L−1 for malachite green and methyl orange and 0.5–150.0 µg L−1 for both rhodamine B and acid red 18. The detection limits calculated to be 0.083, 0.10, 0.12 and 0.17 µg L−1 for MG, RB, MO and AR, respectively. The developed protocol was successfully used for determination of dyes in seawater of Chabahar Bay. The mean recoveries were ranged between 76.1 and 97.3% by mean relative standard deviations of 1.2–7.1%.

  相似文献   

11.
A high‐performance liquid chromatographic method was developed for the analysis of 3'‐hydroxypterostilbene. This method involves the use of a Luna® C18 column with ultraviolet detection at 325 nm. The mobile phase consisted of acetonitrile, water and formic acid (50:50:0.01, v/v/v) with a flow rate of 0.8 mL/min. The calibration curves were linear over the range 0.5–100.0 µg/mL. The mean extraction efficiency was between 97.40 and 111.16%. The precision of the assay was 0.196–14.39% (RSD%), and within 15% at the limit of quantitation (0.5 µg/mL). The bias of the assay was <16% and within 15% at the limit of quantitation. This assay was successfully applied to pre‐clinical pharmacokinetic samples from rat urine and serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A rapid and sensitive LC‐electrospray ionization‐MS method was developed for determining vinorelbine in rat plasma. A 100 µL plasma sample was treated using a protein precipitation procedure and was chromatographed within 4 min using an Inertsil ODS‐3 C18 (2.1 × 50 mm, 5 µm) column. The selected ion monitoring ions [M + H]+ were m/z 779 and m/z 811 for vinorelbine and vinblastine (internal standard), respectively. The method validation showed that the calibration curve for vinorelbine was linear over a concentration range of 1–1000 ng/mL with lower limit of quantification at 1 ng/mL. The method has been successfully applied to pharmacokinetics in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A sensitive method of CZE‐ultraviolet (UV) detection based on the on‐line preconcentration strategy of field‐amplified sample injection (FASI) was developed for the simultaneous determination of five kinds of chlorophenols (CPs) namely 4‐chlorophenol (4‐CP), 2‐chlorophenol (2‐CP), 2,4‐dichlorophenol (2,4‐DCP), 2,4,6‐trichlorophenol (2,4,6‐TCP), and 2,6‐dichlorophenol (2,6‐DCP) in water samples. Several parameters affecting CZE and FASI conditions were systematically investigated. Under the optimal conditions, sensitivity enhancement factors for 4‐CP, 2‐CP, 2,4‐DCP, 2,4,6‐TCP, and 2,6‐DCP were 9, 27, 35, 43, and 43 folds, respectively, compared with the direct CZE, and the baseline separation was achieved within 5 min. Then, the developed FASI‐CZE‐UV method was applied to tap and lake water samples for the five CPs determination. The LODs (S/N = 3) were 0.0018–0.019 µg/mL and 0.0089–0.029 µg/mL in tap water and lake water, respectively. The values of LOQs in tap water (0.006–0.0074 µg/mL) were much lower than the maximum permissible concentrations of 2,4,6‐TCP, 2,4‐DCP, and 2‐CP in drinking water stipulated by World Health Organization (WHO) namely 0.3, 0.04, and 0.01 µg/mL, respectively, and thereby the method was suitable to detect the CPs according to WHO guidelines. Furthermore, the method attained high recoveries in the range of 83.0–119.0% at three spiking levels of five CPs in the two types of water samples, with relative standard deviations of 0.37–8.58%. The developed method was proved to be a simple, sensitive, highly automated, and efficient alternative to CPs determination in real water samples.  相似文献   

14.
Resorcinol–formaldehyde aerogel coating was in situ prepared on the surface of basalt fibers. The aerogel coating is uniformly modified onto basalt fibers, and it is very porous according to the characterization by using scanning electron microscopy. An extraction tube was prepared for in‐tube solid‐phase microextraction by placing the aerogel‐coated basalt fibers into a polyetheretherketone tube. To evaluate the extraction performance toward five estrogenic compounds, the tube was connected with high performance liquid chromatography, the important extraction and desorption conditions were investigated. An online analytical method for detection of estrogens was developed and presented low limits of detection (0.005–0.030 µg/L), wide linear ranges (0.017–20, 0.033–20, and 0.099–20 µg/L), good linearity (r > 0.9990), and satisfactory repeatability (relative standard deviation < 2.7%). The method was successfully applied to detect trace estrogens in real water samples (bottled pure water and bottled mineral water), satisfactory recoveries were ranged from 80 to 125% with two spiking levels of 2 and 6 µg/L.  相似文献   

15.
Potentilla discolor Bunge has been used for diabetes in China for a long time. Corosolic acid (CA) and euscaphic acid (EA), with significant anti‐diabetic activity, are two major triterpenoids in P. discolor. In this study, a specific, sensitive and convenient LC‐MS method has been developed for simultaneous determination of CA and EA in the plasma of normal and diabetic rats after oral administration of the extract of P. discolor. The chromatographic separation was achieved using an Alltima C18 column (53 × 7.0 mm, i.d., 3 µm) with a mobile phase composed of 0.1% formic acid water and 0.1% formic acid acetonitrile at a flow rate of 1.0 mL/min. The detection was performed by MS with electrospray ionization interface in negative selected ion monitoring mode. All the validation data, such as specificity, linearity (r2 > 0.9991 within 0.025–10.0 µg/mL), lower limit of quantitation (2.5 ng/mL), precision (intra‐ and inter‐day <14.7%), accuracy (<15.0%), recovery (85.7–110.8%) and stability were determined and all of them were within the required limits. This method was successfully applied for the evaluation of the pharmacokinetic behaviors of these two compounds in the plasma of normal and diabetic rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The main aim of the present work was to study the retention behavior and quantification of nine nucleosides with the use of octadecyl, alkylamide, cholesterol and alkyl‐phosphate stationary phases. The influence of organic solvent and buffer concentration on the separation of these compounds was under investigation. The retention factor had the highest values for the octadecyl and cholesterol packing materials. Complete separation of all the studied nucleosides was achieved in case of cholesterol stationary phase. The optimized separation method was applied for the quantification of nucleosides in the urine samples. Calibration plots showed good linearity (R2 > 0.999) and the limits of detection were in a range of 0.3–0.5 µg/mL, while the limits of quantitation were >0.9 µg/mL. Accuracy was in the range of 5–11%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, rapid and efficient method, dispersive liquid–liquid microextraction (DLLME) in conjunction with high-performance liquid chromatography (HPLC), has been developed for the determination of three carbamate pesticides (methomyl, carbofuran and carbaryl) in water samples. In this extraction process, a mixture of 35 µL chlorobenzene (extraction solvent) and 1.0 mL acetonitrile (disperser solvent) was rapidly injected into the 5.0 mL aqueous sample containing the analytes. After centrifuging (5 min at 4000 rpm), the fine droplets of chlorobenzene were sedimented in the bottom of the conical test tube. Sedimented phase (20 µL) was injected into the HPLC for analysis. Some important parameters, such as kind and volume of extraction and disperser solvent, extraction time and salt addition were investigated and optimised. Under the optimum extraction condition, the enrichment factors and extraction recoveries ranged from 148% to 189% and 74.2% to 94.4%, respectively. The methods yielded a linear range in the concentration from 1 to 1000 µg L?1 for carbofuran and carbaryl, 5 to 1000 µg L?1 for methomyl, and the limits of detection were 0.5, 0.9 and 0.1 µg L?1, respectively. The relative standard deviations (RSD) for the extraction of 500 µg L?1 carbamate pesticides were in the range of 1.8–4.6% (n = 6). This method could be successfully applied for the determination of carbamate pesticides in tap water, river water and rain water.  相似文献   

18.
A method for tryptophan analysis in bee pollen and royal jelly was developed using HPLC with fluorescence detection. To determine the free tryptophan in bee pollen and royal jelly, ultrasonic extraction was performed using water (pH 6.3)–acetonitrile (10:1, v/v) as extraction solvent. While determining the total tryptophan in these bee products, the method involves alkaline hydrolysis of the proteins with 4 mol/L sodium hydroxide at 110°C for 20 h under anaerobic conditions. The operating conditions for the HPLC analysis were: Symmetry C18 column (4.6 × 250 mm, 5 µm), 0.1% trifluoroacetic acid–methanol (75:25, v/v) as the mobile phase at a flow rate of 1.0 mL/min at 30°C. The fluorescence detector was operated at an excitation wavelength of 280 nm and an emission wavelength of 340 nm. A linear response (r> 0.9998) was obtained in the range 0.0625–5.0 µg/mL. The method was successfully applied to the determination of the free and total tryptophan contents in bee pollens, which were 0.069 ± 0.003 and 2.693 ± 0.476 mg/g, respectively, while only the total tryptophan was detected in royal jelly, with a content of 1.743 ± 0.066 mg/g. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Ultra‐performance convergence chromatography, which integrates the advantages of supercritical fluid chromatography and ultra high performance liquid chromatography technologies, is an environmentally friendly analytical method that uses dramatically reduced amounts of organic solvents. An ultra‐performance convergence chromatography method was developed and validated for the quantification of decursinol angelate and decursin in Angelica gigas using a CSH Fluoro‐Phenyl column (2.1 mm × 150 mm, 1.7 μm) with a run time of 4 min. The method had an improved resolution and a shorter analysis time in comparison to the conventional high‐performance liquid chromatography method. This method was validated in terms of linearity, precision, and accuracy. The limits of detection were 0.005 and 0.004 μg/mL for decursinol angelate and decursin, respectively, while the limits of quantitation were 0.014 and 0.012 μg/mL, respectively. The two components showed good regression (correlation coefficient (r2) > 0.999), excellent precision (RSD < 2.28%), and acceptable recoveries (99.75–102.62%). The proposed method can be used to efficiently separate, characterize, and quantify decursinol angelate and decursin in Angelica gigas and its related medicinal materials or preparations, with the advantages of a shorter analysis time, greater sensitivity, and better environmental compatibility.  相似文献   

20.
Ultra‐performance convergence chromatography is an environmentally friendly analytical technique that employs dramatically reduced amounts of organic solvents compared to conventional chromatographic methods. In this study, a rapid, sensitive, and environmentally friendly method based on ultra‐performance convergence chromatography was developed for the quantification of four major chromones present in the roots of Saposhnikovia divaricata (Turcz.) Schischk. Using this method, the analysis time was significantly shortened compared to conventional high‐performance liquid chromatography techniques. In addition, the influence of cosolvent type, cosolvent ratio, column temperature, system pressure, and flow rate on the peak resolution was investigated. The proposed method was validated in terms of its limits of detection, limits of quantitation, linearity, precision, and accuracy. More specifically, the limits of detection of the four chromones ranged from 0.006 to 0.033 μg/mL, while the limits of quantitation ranged from 0.019 to 0.101 μg/mL. Our method also exhibited a good regression (r2 > 0.999), excellent precision (RSD < 0.60%), and acceptable recoveries (99.48–102.89%). Finally, the quantities of these four chromones present in 20 commercial samples from Korea and China were successfully evaluated using the developed method, indicating that the proposed method is suitable for the rapid and accurate quality control of Saposhnikovia divaricata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号