首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Hoshino H  Yotsuyanagi T 《Talanta》1984,31(7):525-530
The ion-pair extraction equilibria of the iron(II) and iron(III) chelates of 4-(2-pyridylazo)resorcinol (PAR, H(2)L) are described. The anionic chelates were extracted into chloroform with benzyldimethyltetradecylammonium chloride (QC1) as counter-ion. The extraction constants were estimated to be K(ex1)(Fe(II)) = [Q{Fe(II)(HL)L}](0)/[Q(+)][{Fe(II)(HL)L}(-)] = 10(8.59 +/- 0.11), K(ex2)(Fe(II)) = [Q(2){Fe(II)L(2)}](o)/ [Q(+)](2)[{Fe(II)L(2)}(2-)] = 10(12.17 +/- 0.10) and K(ex1)(Fe(III)) = [Q{Fe((III))L(2)}](o)/(Q(+)][{Fe(III)L(2)}(-)] = 10(6.78 +/- 0.15) at I = 0.10 and 20 degrees , where [ ](o) is concentration in the chloroform phase. Aggregation of Q{Fe(III)L(2)} in chloroform was observed and the dimerization constant (K(d) = [Q(2){Fe(III)L(2)}(2)](o)/[Q{Fe(III)L(2)}](o)(2)) was evaluated as log K(d) = 4.3 +/- 0.3 at 20 degrees . The neutral chelates of {Fe(II)(HL)(2)} and {Fe(III)(HL)L}, and the ion-pair of the cationic chelate, {Fe(III)(HL)(2)}ClO(4), were also extracted into chloroform or nitrobenzene. The relationship between the forms and extraction properties of the iron(II) and iron(III) PAR chelates are discussed in connection with those of the nickel(II) and cobalt(III) complexes. Correlation between the extraction equilibrium data and the elution behaviour of some PAR chelates in ion-pair reversed-phase partition chromatography is also discussed.  相似文献   

2.
Enzymes in the oxygen-activating class of mononuclear non-heme iron oxygenases (MNOs) contain a highly conserved iron center facially ligated by two histidine nitrogen atoms and one carboxylate oxygen atom that leave one face of the metal center (three binding sites) open for coordination to cofactor, substrate, and/or dioxygen. A comparative family of [Fe(II/III)(N(2)O(n))(L)(4-n))](±x), n = 1-3, L = solvent or Cl(-), model complexes, based on a ligand series that supports a facially ligated N,N,O core that is then modified to contain either one or two additional carboxylate chelate arms, has been structurally and spectroscopically characterized. EPR studies demonstrate that the high-spin d(5) Fe(III)g = 4.3 signal becomes more symmetrical as the number of carboxylate ligands decreases across the series Fe(N(2)O(3)), Fe(N(2)O(2)), and Fe(N(2)O(1)), reflecting an increase in the E/D strain of these complexes as the number of exchangeable/solvent coordination sites increases, paralleling the enhanced distribution of electronic structures that contribute to the spectral line shape. The observed systematic variations in the Fe(II)-Fe(III) oxidation-reduction potentials illustrate the fundamental influence of differential carboxylate ligation. The trend towards lower reduction potential for the iron center across the [Fe(III)(N(2)O(1))Cl(3)](-), [Fe(III)(N(2)O(2))Cl(2)](-) and [Fe(III)(N(2)O(3))Cl](-) series is consistent with replacement of the chloride anions with the more strongly donating anionic O-donor carboxylate ligands that are expected to stabilize the oxidized ferric state. This electrochemical trend parallels the observed dioxygen sensitivity of the three ferrous complexes (Fe(II)(N(2)O(1)) < Fe(II)(N(2)O(2)) < Fe(II)(N(2)O(3))), which form μ-oxo bridged ferric species upon exposure to air or oxygen atom donor (OAD) molecules. The observed oxygen sensitivity is particularly interesting and discussed in the context of α-ketoglutarate-dependent MNO enzyme mechanisms.  相似文献   

3.
The novel mononuclear complex PPh(4)-mer-[Fe(III)(bpca)(3)(CN)(3)].H(2)O (1) [PPh(4)(+) = tetraphenylphosphonium cation and bpca = bis(2-pyridylcarbonyl)amidate anion] and ladder-like chain compound [[Fe(III)(bpca)(micro-CN)(3)Mn(II)(H(2)O)(3)] [Fe(III)(bpca)(CN)(3)]].3H(2)O (2) have been prepared and characterized by X-ray diffraction analysis. Compound 1 is a low-spin iron(III) compound with three cyanide ligands in mer arrangement and a tridentate N-donor ligand building a distorted octahedral environment around the iron atom. Compound 2 is an ionic salt made up of cationic ladder-like chains [[Fe(III)(bpca)(micro-CN)(3)Mn(II)(H(2)O)(3)]](+) and uncoordinated anions [Fe(III)(bpca)(3)(CN)(3)](-). The magnetic properties of 2 correspond to those of a ferrimagnetic chain with significant intrachain antiferromagnetic coupling between the low-spin iron(III) centers and the high-spin manganese(II) cations. This compound exhibits ferrimagnetic ordering below 2.0 K.  相似文献   

4.
Mononuclear nonheme iron(IV)-oxo complexes with two different topologies, cis-α-[Fe(IV)(O)(BQCN)](2+) and cis-β-[Fe(IV)(O)(BQCN)](2+), were synthesized and characterized with various spectroscopic methods. The effect of ligand topology on the reactivities of nonheme iron(IV)-oxo complexes was investigated in C-H bond activation and oxygen atom-transfer reactions; cis-α-[Fe(IV)(O)(BQCN)](2+) was more reactive than cis-β-[Fe(IV)(O)(BQCN)](2+) in the oxidation reactions. The reactivity difference between the cis-α and cis-β isomers of [Fe(IV)(O)(BQCN)](2+) was rationalized with the Fe(IV/III) redox potentials of the iron(IV)-oxo complexes: the Fe(IV/III) redox potential of the cis-α isomer was 0.11 V higher than that of the cis-β isomer.  相似文献   

5.
The reaction of [Fe(II)(beta-BPMCN)(OTf)2] (1, BPMCN = N,N'-bis(2-pyridylmethyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane) with tBuOOH at low-temperature yields alkylperoxoiron(III) intermediates 2 in CH2Cl2 and 2-NCMe in CH3CN. At -45 degrees C and above, 2-NCMe converts to a pale green species 3 (lambda(max) = 753 nm, epsilon = 280 M(-1) cm(-1)) in 90% yield, identified as [Fe(IV)(O)(BPMCN)(NCCH3)]2+ by comparison to other nonheme [Fe(IV)(O)(L)]2+ complexes. Below -55 degrees C in CH2Cl2, 2 decays instead to form deep turquoise 4 (lambda(max) = 656, 845 nm; epsilon = 4000, 3600 M(-1) cm(-1)), formulated to be an unprecedented alkylperoxoiron(IV) complex [Fe(IV)(BPMCN)(OH)(OOtBu)]2+ on the basis of M?ssbauer, EXAFS, resonance Raman, NMR, and mass spectral evidence. The reactivity of 1 with tBuOOH in the two solvents reveals an unexpectedly rich iron(IV) chemistry that can be supported by the BPMCN ligand.  相似文献   

6.
The new iron(II)-thiolate complexes [((iPr)BIP)Fe(II)(SPh)(Cl)] (1) and [((iPr)BIP)Fe(II)(SPh)(OTf)] (2) [BIP = bis(imino)pyridine] were prepared as models for cysteine dioxygenase (CDO), which converts Cys to Cys-SO(2)H at a (His)(3)Fe(II) center. Reaction of 1 and 2 with O(2) leads to Fe-oxygenation and S-oxygenation, respectively. For 1 + O(2), the spectroscopic and reactivity data, including (18)O isotope studies, are consistent with an assignment of an iron(IV)-oxo complex, [((iPr)BIP)Fe(IV)(O)(Cl)](+) (3), as the product of oxygenation. In contrast, 2 + O(2) results in direct S-oxygenation to give a sulfonato product, PhSO(3)(-). The positioning of the thiolate ligand in 1 versus 2 appears to play a critical role in determining the outcome of O(2) activation. The thiolate ligands in 1 and 2 are essential for O(2) reactivity and exhibit an important influence over the Fe(III)/Fe(II) redox potential.  相似文献   

7.
For the first time, we observed a stable and intense ion (m/z 376) of the oxygenated water cluster ion ((H(2)O)(20)O(+)) produced from simply spraying an aqueous solution of iron nanoparticles (Fe NPs) into an electrospray mass spectrometry (ESI-MS) system. Tandem mass spectrometric (MS/MS and MS/MS/MS) results were applied to identify the assignments of the fragment ions of m/z 376 in order to explore the possible structures of this cluster ion. The possible structures of the (H(2)O)(20)O(+) ions are proposed as pentagonal dodecahedron water clathrate cages from the results of tandem mass spectrometry since eliminations of five water molecules were frequently observed in the MS/MS results for many subsequent fragment ions of m/z 376. The formation of this oxygenated water cluster ion ((H(2)O)(20)O(+)) in ESI-MS is attributed to the high surface reactivity and surface energy of Fe NPs during ESI processes (under high temperature and high voltage (5 kV) of ESI spray environment). We believe that the observation of self-assembly formation of oxygenated water clusters is an important issue in nanoscience as well as in the fields of water clusters.  相似文献   

8.
In our preliminary communication (Ogo, S.; Wada, S.; Watanabe, Y.; Iwase, M.; Wada, A.; Harata, M.; Jitsukawa, K.; Masuda, H.; Einaga, H. Angew. Chem., Int. Ed. 1998, 37, 2102-2104), we reported the first example of X-ray analysis of a mononuclear six-coordinate (hydroxo)iron(III) non-heme complex, [Fe(III)(tnpa)(OH)(RCO(2))]ClO(4) [tnpa = tris(6-neopentylamino-2-pyridylmethyl)amine; for 1, R = C(6)H(5)], which has a characteristic cis (hydroxo)-Fe(III)-(carboxylato) configuration that models the cis (hydroxo)-Fe(III)-(carboxylato) moiety of the proposed (hydroxo)iron(III) species of lipoxygenases. In this full account, we report structural and spectroscopic characterization of the cis (hydroxo)-Fe(III)-(carboxylato) configuration by extending the model complexes from 1 to [Fe(III)(tnpa)(OH)(RCO(2))]ClO(4) (2, R = CH(3); 3, R = H) whose cis (hydroxo)-Fe(III)-(carboxylato) moieties are isotopically labeled by (18)OH(-), (16)OD(-), (18)OD(-), (12)CH(3)(12)C(18)O(2)(-), (12)CH(3)(13)C(16)O(2)(-), (13)CH(3)(12)C(16)O(2)(-), (13)CH(3)(13)C(16)O(2)(-), and H(13)C(16)O(2)(-). Complexes 1-3 are characterized by X-ray analysis, IR, EPR, and UV-vis spectroscopy, and electrospray ionization mass spectrometry (ESI-MS).  相似文献   

9.
Several iron(III) complexes incorporating diamidoether ligands are described. The reaction between [Li(2)[RN(SiMe(2))](2)O] and FeX(3) (X=Cl or Br; R=2,4,6-Me(3)Ph or 2,6-iPr(2)Ph) form unusual ate complexes, [FeX(2)Li[RN(SiMe(2))](2)O](2) (2, X=Cl, R=2,4,6-Me(3)Ph; 3, X=Br, R=2,4,6-Me(3)Ph; 4, X=Cl, R=2,6-iPr(2)Ph) which are stabilized by Li-pi interactions. These dimeric iron(III)-diamido complexes exhibit magnetic behaviour characteristic of uncoupled high spin (S= 5/2 ) iron(III) centres. They also undergo halide metathesis resulting in reduced iron(II) species. Thus, reaction of 2 with alkyllithium reagents leads to the formation of iron(II) dimer [Fe[Me(3)PhN(SiMe(2))](2)O](2) (6). Similarly, the previously reported iron(III)-diamido complex [FeCl[tBuN(SiMe(2))](2)O](2) (1) reacts with LiPPh(2) to yield the iron(II) dimer [Fe[tBuN(SiMe(2))](2)O](2) but reaction with LiNPh(2) gives the iron(II) product [Fe(2)(NPh(2))(2)[tBuN(SiMe(2))](2)O] (5). Some redox chemistry is also observed as side reactions in the syntheses of 2-4, yielding THF adducts of FeX(2): the one-dimensional chain [FeBr(2)(THF)(2)](n) (7) and the cluster [Fe(4)Cl(8)(THF)(6)]. The X-ray crystal structures of 3, 5 and 7 are described.  相似文献   

10.
Kojic acid, 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one, has been used extensively as a clinical iron-chelating drug although the nature of the complexes of iron and kojic acid has not been established. In this article we demonstrate the complexation of kojic acid with iron(III) chloride by using electrospray ionization mass spectrometry (ESI-MS). The ESI-MS analysis revealed different reactions between iron(III) chloride and kojic acid (M), and the mass spectrum exhibited four complexes: [Fe+2(M-H)]+, [Fe+3(M-H)+H]+, [Fe2+4(M-H)+Cl]+, and [Fe2+5(M-H)]+. All these proposed complexes and the presence of chloride ion in one of the dinuclear complexes have been confirmed by isotopic patterns and fragmentation studies by means of tandem mass spectrometry (MSn).  相似文献   

11.
Cundeva K  Stafilov T 《Talanta》1997,44(3):451-456
Colloid flotation of zinc from fresh water with a combination of two collectors, hydrated iron(III) oxide (Fe(2)O(3).xH(2)O) and iron(III) tetramethylenedithiocarbamate (Fe(TMDTC)(3)), permits rapid separation of the precipitate before its atomic absorption spectrometric (AAS) analysis. All important parameters necessary for the successful flotation like optimal mass of collectors, pH of the medium, electrokinetic potential of the collector particle surfaces, type of tenside, induction time etc., were checked. At the optimal pH value of medium (5.5) establishing by recommended procedure, zinc was separated quantitatively (97.4-98.8%) with 5 mg Fe(III) as constitutive element of the two collectors used. The content of zinc was determined by flame atomic absorption spectrometry (FAAS). These results were compared with the results obtained by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The FAAS detection limit for zinc is 9.4 mug 1(-1). The proposed method is simple, rapid and applicable to the zinc separation at mug 1(-1) levels from a large volume of water.  相似文献   

12.
The kinetics and mechanisms of ligand substitution reactions of the iron(III) hydroxo dimer, Fe(2)(mu-OH)(2)(H(2)O)(8)(4+), with various inorganic ligands were studied by the stopped-flow method at 10.0 or 25.0 C in 1.0 M NaClO(4). The transient formation of the following di- and tetranuclear complexes was confirmed: Fe(2)(OH)SO(4)(3+), Fe(2)(OH)H(2)PO(2)(4+), Fe(2)(OH)HPO(3)(3+), Fe(2)(OH)SeO(3)(3+), and Fe(4)(AsO(4))(OH)(2)(7+). The catalytic effect of arsenic(III) on the hydrolytic reaction of iron(III) was also attributed to the formation of a dinuclear complex at very low concentration levels. Fast formation and subsequent dissociation of the multinuclear species into the corresponding mononuclear complexes (FeL) proceed via parallel reaction paths which, in general, show composite pH dependencies. The appropriate rate laws were established. The reactions of the different ligands occur at very similar rates, though the uninegatively charged singly deprotonated form reacts about 1 order of magnitude faster than the neutral form of the same ligand. The results can conveniently be interpreted in terms of a dissociative interchange mechanism which postulates the formation of an intermediate complex in which the ligand is coordinated to only one Fe(III) center of the hydroxo dimer. In a subsequent fast step, the ligand forms a bridge between the two metal ions by replacing one of the OH groups. The dissociation of the dinuclear complex into FeL most likely proceeds via the same intermediate.  相似文献   

13.
The synthesis and magnetic properties of the compounds [HNEt(3)][Fe(2)(OMe)(Ph-sao)(2) (Ph-saoH)(2)].5MeOH (1.5MeOH), [Fe(3)O(Et-sao)(O(2)CPh)(5)(MeOH)(2)].3MeOH (2.3MeOH), [Fe(4)(Me-sao)(4)(Me-saoH)(4)] (3), [HNEt(3)](2)[Fe(6)O(2)(Me-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (4), [Fe(8)O(3)(Me-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (5), [Fe(8)O(3)(Et-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (6), and [Fe(8)O(3)(Ph-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (7) are reported (Me-saoH(2) is 2'-hydroxyacetophenone oxime, Et-saoH(2) is 2'-hydroxypropiophenone oxime and Ph-saoH(2) is 2-hydroxybenzophenone oxime). 1-7 are the first Fe(III) compounds synthesised using the derivatised salicylaldoxime ligands, R-saoH(2). 1 is prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Ph-saoH(2) in the presence of NEt(3) in MeOH; 2 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Et-saoH(2) and NaO(2)CPh in the presence of NEt(4)OH in MeOH; 3 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Me-saoH(2) and NaO(2)CCMe(3) in the presence of NEt(4)OH in MeOH; and 4 prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Me-saoH(2) in the presence of NEt(3) in MeOH. 4 is a rare example of a polynuclear iron complex containing a coordinated SO(4)(2-) ion. Compounds 5-7 are prepared by treatment of Fe(O(2)CMe)(2) with Me-saoH(2) (5), Et-saoH(2) (6), Ph-saoH(2) (7) in the presence of H(3)tea (triethanolamine) in MeOH, and represent the largest nuclearity Fe(III) clusters containing salicyladoxime-based ligands, joining a surprisingly small family of characterised octanuclear Fe complexes. Variable temperature magnetic susceptibilty measurements of 1, 3 and 5-7 reveal all five complexes possess S = 0 spin ground states; 2 possesses an S = 1/2 spin ground state, while 4 has an S = 4 +/- 1 spin ground state.  相似文献   

14.
Reaction of iron salts with three tripodal imidazole ligands, H(3)(1), H(3)(2), H(3)(3), formed from the condensation of tris(2-aminoethyl)amine (tren) with 3 equiv of an imidazole carboxaldehyde yielded eight new cationic iron(III) and iron(II), [FeH(3)L](3+or2+), and neutral iron(III), FeL, complexes. All complexes were characterized by EA(CHN), IR, UV, M?ssbauer, mass spectral techniques and cyclic voltammetry. Structures of three of the complexes, Fe(2).3H(2)O (C(18)H(27)FeN(10)O(3), a = b = c = 20.2707(5), cubic, I3d, Z = 16), Fe(3).4.5H(2)O (C(18)H(30)FeN(10)O(4.5), a = 20.9986(10), b = 11.7098(5), c = 19.9405(9), beta = 109.141(1), monoclinic, P2(1)/c), Z = 8), and [FeH(3)(3)](ClO(4))(2).H(2)O (C(18)H(26)Cl(2)FeN(10)O(9), a = 9.4848(4), b = 23.2354(9), c = 12.2048(5), beta = 111.147(1) degrees, monoclinic, P2(1)/n, Z = 4) were determined at 100 K. The structures are similar to one another and feature an octahedral iron with facial coordination of imidazoles and imine nitrogen atoms. The iron(III) complexes of the deprotonated ligands, Fe(1), Fe(2), and Fe(3), are low-spin while the protonated iron(III) cationic complexes, [FeH(3)(1)](ClO(4))(3) and [FeH(3)(2)](ClO(4))(3), are high-spin and spin-crossover, respectively. The iron(II) cationic complexes, [FeH(3)(1)]S(4)O(6), [FeH(3)(2)](ClO(4))(2), [FeH(3)(3)](ClO(4))(2), and [FeH(3)(3)][B(C(6)H(5))(4)](2) exhibit spin-crossover behavior. Cyclic voltammetric measurements on the series of complexes show that complete deprotonation of the ligands produces a negative shift in the Fe(III)/Fe(II) reduction potential of 981 mV on average. Deprotonation in air of either cationic iron(II) or iron(III) complexes, [FeH(3)L](3+or2+), yields the neutral iron(III) complex, FeL. The process is reversible for Fe(3), where protonation of Fe(3) yields [FeH(3)(3)](2+).  相似文献   

15.
The syntheses, structures and magnetic properties of six iron complexes stabilised with the derivatised salicylaldoxime ligands Me-saoH(2) (2-hydroxyethanone oxime) and Et-saoH(2) (2-hydroxypropiophenone oxime) are discussed. The four hexanuclear and two octanuclear complexes of formulae [Fe(8)O(2)(OMe)(4)(Me-sao)(6)Br(4)(py)(4)]·2Et(2)O·MeOH (1·2Et(2)O·MeOH), [Fe(8)O(2)(OMe)(3.85)(N(3))(4.15)(Me-sao)(6)(py)(2)] (2), [Fe(6)O(2)(O(2)CPh-4-NO(2))(4)(Me-sao)(2)(OMe)(4)Cl(2)(py)(2)] (3), [Fe(6)O(2)(O(2)CPh-4-NO(2))(4)(Et-sao)(2)(OMe)(4)Cl(2)(py)(2)]·2Et(2)O·MeOH (4·2Et(2)O·MeOH), [HNEt(3)](2)[Fe(6)O(2)(Me-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (5) and [HNEt(3)](2)[Fe(6)O(2)(Et-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (6) all are built from a series of edge-sharing [Fe(4)(μ(4)-O)](10+) tetrahedra. Complexes 1 and 2 display a new μ(4)-coordination mode of the oxime ligand and join a small group of Fe-phenolic oxime complexes with nuclearity greater than six.  相似文献   

16.
pK(a) values for the hydroxamic acid, alpha-NH(3)(+), and epsilon-NH(3)(+) groups of L-lysinehydroxamic acid (LyHA, H(3)L(2+)) were found to be 6.87, 8.89, and 10.76, respectively, in aqueous solution (I = 0.1 M, NaClO(4)) at 25 degrees C. O,O coordination to Fe(III) by LyHA is supported by H(+) stoichiometry, UV-vis spectral shifts, and a shift in nu(CO) from 1648 to 1592 cm(-1) upon formation of mono(L-lysinehydroxamato)tetra(aquo)iron(III) (Fe(H(2)L)(H(2)O)(4)(4+)). The stepwise formation of tris(L-lysinehydroxamato)iron(III) from Fe(H(2)O)(6)(3+) and H(3)L(2+) was characterized by spectrophotometric titration, and the values for log beta(1), log beta(2), and log beta(3) are 6.80(9), 12.4(2), and 16.1(2), respectively, at 25 degrees C and I = 2.0 M (NaClO(4)). Stopped-flow spectrophotometry was used to study the proton-driven stepwise ligand dissociation kinetics of tris(L-lysinehydroxamato)iron(III) at 25 degrees C and I = 2.0 M (HClO(4)/NaClO(4)). Defining k(n) and k(-n) as the stepwise ligand dissociation and association rate constants and n as the number of bound LyHA ligands, k(3), k(-3), k(2), k(-2), k(1), and k(-1) are 3.0 x 10(4), 2.4 x 10(1), 3.9 x 10(2), 1.9 x 10(1), 1.4 x 10(-1), and 1.2 x 10(-1) M(-1) s(-1), respectively. These rate and equilibrium constants are compared with corresponding constants for Fe(III) complexes of acetohydroxamic acid (AHA) and N-methylacetohydroxamic acid (NMAHA) in the form of a linear free energy relationship. The role of electrostatics in these complexation reactions to form the highly charged Fe(LyHA)(3)(6+) species is discussed, and an interchange mechanism mediated by charge repulsion is presented. The reduction potential for tris(L-lysinehydroxamato)iron(III) is -214 mV (vs. NHE), and a comparison to other hydroxamic acid complexes of Fe(III) is made through a correlation between E(1/2) and pFe.  相似文献   

17.
Pyridine solutions of ClFe(III)(meso-NH(2)-OEP) undergo oxidative ring opening when exposed to dioxygen. The high-spin iron(III) complex, ClFe(III)(meso-NH(2)-OEP), has been isolated and characterized by X-ray crystallography. In the solid state, it has a five-coordinate structure typical for high-spin (S = 5/2) iron(III) complex. In chloroform-d solution, ClFe(III)(meso-NH(2)-OEP) displays an (1)H NMR spectrum characteristic of a high-spin, five-coordinate complex and is unreactive toward dioxygen. However, in pyridine-d(5) solution a temperature-dependent equilibrium exists between the high-spin (S = 5/2), six-coordinate complex, [(py)ClFe(III)(meso-NH(2)-OEP)], and the six-coordinate, low spin (S = 1/2 with the less common (d(xz)d(yz))(4)(d(xy))(1) ground state)) complex, [(py)(2)Fe(III)(meso-NH(2)-OEP)](+). Such pyridine solutions are air-sensitive, and the remarkable degradation has been monitored by (1)H NMR spectroscopy. These studies reveal a stepwise conversion of ClFe(III)(meso-NH(2)-OEP) into an open-chain tetrapyrrole complex in which the original amino group and the attached meso carbon atom have been converted into a nitrile group. Additional oxidation at an adjacent meso carbon occurs to produce a ligand that binds iron by three pyrrole nitrogen atoms and the oxygen atom introduced at a meso carbon. This open-chain tetrapyrrole complex itself is sensitive to attack by dioxygen and is converted into a tripyrrole complex that is stable to further oxidation and has been isolated. The process of oxidation of the Fe(III) complex, ClFe(III)(meso-NH(2)-OEP), is compared with that of the iron(II) complex, (py)(2)Fe(II)(meso-NH(2)-OEP); both converge to form identical products.  相似文献   

18.
N-bridged diiron tetra-tert-butylphthalocyanine activates H(2)O(2) to form anionic hydroperoxo complex [(Pc)Fe(IV)=N-Fe(III)(Pc)-OOH](-) prone to heterolytic cleavage of O-O bond with the release of OH(-) and formation of neutral diiron oxo phthalocyanine cation radical complex, PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O. ESI-MS data showed stability of the Fe-N-Fe binuclear structure upon formation of this species, capable of oxidizing methane and benzene via O-atom transfer. The slow formation kinetics and the high reactivity preclude direct detection of this oxo complex by low temperature UV-vis spectroscopy. However, strong oxidizing properties and the results of EPR study support the formation of PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O. Addition of H(2)O(2) at -80 °C led to the disappearance of iron EPR signal and to the appearance of the narrow signal at g = 2.001 consistent with the transient formation of PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O. In the course of this study, another high valent diiron species was prepared in the solid state with 70% yield. The M?ssbauer spectrum shows two quadrupole doublets with δ(1) = -0.14 mm s(-1), ΔE(Q1) = 1.57 mm s(-1) and δ(2) = -0.10 mm s(-1), ΔE(Q2) = 2.03 mm s(-1), respectively. The negative δ values are consistent with formation of Fe(iv) states. Fe K-edge EXAFS spectroscopy reveals conservation of the diiron Fe-N-Fe core. In XANES, an intense 1s → 3d pre-edge feature at 7114.4 eV suggests formation of Fe(iv) species and attaching of one oxygen atom per two Fe atoms at the 1.90 ? distance. On the basis of M?ssbauer, EPR, EXAFS and XANES data this species was tentatively assigned as (Pc)Fe(IV)=N-Fe(IV)(Pc)-OH which could be formed from PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O by hydrogen atom abstraction from a solvent molecule. Thus, despite unfavourable kinetics, we succeeded in the preparation of the first dirion(iv) phthalocyanine complex with oxygen ligand, generated in the (Pc)Fe(IV)=N-Fe(III)(Pc) - H(2)O(2) system capable of oxidizing methane.  相似文献   

19.
The low-spin iron(III) complex AsPh(4)[Fe(III)(bpy)(CN)(4)].CH(3)CN (1) [AsPh(4) = tetraphenylarsonium cation] and the heterobimetallic chains [{Fe(III)(L)(CN)(4)}(2)Ni(II)(H(2)O)(2)].4H(2)O with L = bpy (2) and phen (3) [bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline] have been prepared and their structures determined by X-ray diffraction methods. The structure of 1 consists of mononuclear [Fe(bpy)(CN)(4)](-) anions, tetraphenylarsonium cations and acetonitrile molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of the bidentate bpy and four carbon atoms of four terminal cyanide groups building a distorted octahedral surrounding around the metal atom. 2 and 3 are isomorphous compounds whose structure is made up of neutral 4,2-ribbon like bimetallic chains of formula [{Fe(III)(L)(CN)(4)}(2)Ni(II)(H(2)O)(2)] where the [Fe(III)(L)(CN)(4)](-) unit acts as a bis-monodentate bridging ligand toward the trans-diaquanickel(II) units through two of its four cyanide groups in cis positions. The chains exhibit two orientations in the unit cell and they interact with each other through hydrogen bonds involving the coordination and crystallization water molecules together with the uncoordinated cyanide nitrogen atoms of the [Fe(L)(CN)(4)](-) units. Compounds 2 and 3 behave as ferromagnetic Fe(III)(2)Ni(II) chains which interact ferromagnetically at very low temperatures in the case of 2, whereas metamagnetic-like behaviour is observed for with a critical field (H(c)) around 200 G. For H > H(c) the ferromagnetic Fe(III)(2)Ni(II) chains of 3 exhibit a frequency dependence of the out-of-phase ac susceptibility signal at T < 3.5 K.  相似文献   

20.
This paper is concerned with the structural data obtained for two amorphous binuclear complexes of iron(III) and aluminum(III) with chromium(III)-diethylentriaminepentaacetic acid (chromium(III)-DTPA, CrL(2)(-)) using the energy-dispersive X-ray diffraction technique. Fe(OH)CrL(H(2)O)(6) and Al(OH)CrL(H(2)O)(6) are binuclear complexes, the metals ions being bridged via oxygen atoms. The metal ions are all octahedrally coordinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号