首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
马洁  王长水  张倩倩  张秀兰  郭雪清 《化学学报》2007,65(24):2858-2862
红串红球菌通过4S途径降解二苯并噻吩(DBT)产生 和2-羟基联苯(2-HBP). 和2-HBP的存在对红串红球菌的进一步脱硫有抑制作用, 加入脱 和2-HBP 的菌株可以解除 和2-HBP对红串红球菌脱硫反应的抑制, 使该反应继续向生成产物的方向移动, 从而提高其脱硫率. 在脱硫菌和专一性降解 的水解好氧菌(代号: PYS)的协同作用下可以使高浓度的DBT从1.142 mmol/L降到0.0468 mmol/L, 降解率达到95.9%, 比没有加PYS时提高32%的脱除率. 在油水比为1∶9的条件下, 可以将柴油中的硫从554 mg/mL降到306 mg/mL, 降解率达到44.8%.  相似文献   

2.
一株红球菌脱硫菌株脱硫特性的研究   总被引:8,自引:0,他引:8  
从炼油厂污水排放口取得的土样中筛选到一株能降解二苯并噻吩 (DBT)的菌株 ,用GC/MS方法 ,证明其降解DBT走硫专一脱除途径 ,即“4S途径” .该菌株被命名为SDUZAWQ ,用微生物生理生化实验及 16SrDNA序列分析初步鉴定为红球菌属 (Rhodococcussp .) .实验结果表明 ,红球菌SDUZAWQ可有效降解苯并噻吩 (BT)和DBT及其甲基衍生物 .在 2d内 ,BT与DBT可同时完全降解 ,0 .5mmol·L-1的BT在 1d内可降解掉 86% ,降解速度高于DBT的降解 .5 MBT的降解率也高于 4,6 DMDBT和 4 MDBT .4 MDBT较 4,6 DMDBT更难降解 ,在 2d内 ,红球菌SDUZAWQ可降解 62 %的 4,6 DMDBT ,而相同条件下 ,4 MDBT仅能被降解 3 6% .  相似文献   

3.
刘镔  马洁  孙西同  孙晓彦 《应用化学》2010,27(9):1071-1075
研究了脱硫菌——红串红球菌NCC-1在直流电场作用下的生长及脱硫状况,以及实际柴油体系中的脱硫效率,并对外加弱电流加速脱硫菌生长的机理进行了初探。实验表明,水相适宜范围的电流密度可以提高脱硫菌的脱硫效率,脱硫菌脱硫的最佳电流密度为0.72A/m2,该条件下,铂电极培养体系菌体比不加电培养体系提前48h完全降解0.2mmol/L二苯并噻吩(DBT)。比相同电流密度钛电极培养体系菌体提前24h。铂电极最佳电流密度下菌体对实际柴油的脱硫率可以达到67.4%,比钛电极培养体系菌体高11.7%,高于不加电24.6%。经验证,发现引起这种变化的主要原因是水的阴极电解产物吸附氢和氢气的比例不同,其中氢气对摇瓶培养菌体促进作用显著。  相似文献   

4.
活性炭的表面处理对二苯并噻吩催化氧化脱除的影响   总被引:3,自引:1,他引:3  
将一种木质活性炭经过三种表面处理,即高锰酸钾稀硫酸溶液液相氧化、浓硝酸液相氧化和350℃低温气相氧化处理。实验所选活性炭及相应的表面改性炭使用氮气吸附和Boehm滴定分别进行了结构性质和表面化学表征。研究了所选活性炭和相应的表面改性炭催化过氧化氢氧化脱除二苯并噻吩(DBT)。实验结果表明,活性炭表面化学对二苯并噻吩的氧化脱除影响很大;炭表面化学对DBT吸附脱除的影响不同于对DBT氧化脱除的影响,表面酸性越强越有利于DBT的吸附;表面羰基能加速过氧化氢产生自由基,表面羰基量的增加明显有利于DBT的氧化脱除。活性炭经过热处理后,在二苯并噻吩的氧化脱除中催化活性明显增加,正辛烷溶液中硫的体积质量从0.556g·L-1降到0.009g·L-1。  相似文献   

5.
模拟轻质油品的氧化脱硫   总被引:6,自引:10,他引:6  
以正庚烷为溶剂,苯并噻吩(BT)、二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)作为模型含硫化合物组成模拟轻质油品,在H2O2-HCOOH氧化体系中对模拟轻质油品氧化脱硫进行了研究。考察了氧化剂用量、氧化温度、氧化时间及芳烃、烯烃、含氮化合物的存在等因素对BT、DBT脱除的影响。实验结果表明:在反应温度60 ℃,H2O2∶S=7∶1(mol/mol),H2O2∶HCOOH=1∶1(v/v),反应时间在40 min的条件下,4,6-DMDBT能全部脱除, DBT、BT的脱除率分别为96% 、58%。向油品中添加芳烃、烯烃、含氮化合物等对BT、DBT的脱除均有不同程度的影响。  相似文献   

6.
MoO3/介孔Al2O3催化氧化脱除模拟油中的硫   总被引:1,自引:0,他引:1  
以环己烷为溶剂,二苯并噻吩(DBT)、苯并噻吩(BT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和噻吩(Th)为模型含硫化合物,配制成模拟油,在MoO3/介孔Al2O3-H2O2体系中对模拟油催化氧化脱硫进行了研究.考察了MoO3负载量、氧化剂用量、催化剂用量、氧化反应温度及反应时间对DBT脱除效果的影响.实验结...  相似文献   

7.
采用溶胶凝胶法制备纳米TiO2光催化剂,引入超声作用,以空气中的氧气为氧化剂,正辛烷为模拟油品对燃料油中硫化物的脱除进行了研究。考察了光照强度、催化剂用量、反应时间、二苯并噻吩(DBT)初始浓度、超声功率等因素对TiO2光催化二苯并噻吩溶液降解效率的影响。结果表明,引入超声后DBT的降解率提高了10%左右,并在TiO2用量为2 g/L,通气量为800 mL/min,光照距离20 cm,DBT初始浓度为600 mg/L,反应时间为150 min,超声功率为500 W的条件下,DBT降解率达到了72.6%。  相似文献   

8.
研究了二苯并噻吩(DBT)、4-甲基二苯并噻吩(4-MDBT)和4,6-二甲基二苯并噻吩(4,6-DMDBT)在非负载型NiMoW催化剂上的加氢脱硫反应产物分布及反应机理,给出了它们在非负载型催化剂上加氢脱硫反应网络.研究发现,由于甲基的空间位阻效应,二苯并噻吩类化合物加氢脱硫转化率顺序为4,6-DMDBT≈4-MDBT<DBT,而非负载型NiMoW催化剂具有很高的芳环加氢活性,有利于烷基取代的芳环加氢,减弱空间位阻效应,使烷基取代的二苯并噻吩类化合物得到有效脱除.DBT的脱硫产物会被进一步加氢,其产物分布与联苯加氢产物相似.4-MDBT有两种预加氢脱硫反应路径,甲基取代的苯环由于甲基的供电子效应会被优先加氢.非负载型催化剂存在的L酸中心会使部分4-MDBT和4,6-DMDBT通过脱甲基反应生成DBT再进行脱硫反应.  相似文献   

9.
合成并表征了一类新型离子液体1-烷基-3-羧甲基苯并咪唑双三氟甲磺酰亚胺盐,将其与双氧水组合用于脱除模型油中的硫化物.结果表明,当模型油与萃取/催化剂1-辛基-3-羧甲基苯并咪唑双三氟甲磺酰亚胺盐([C_2O_2OBIM][Tf2N])的质量比为5∶1,H_2O_2/S摩尔比为5∶1,于75℃反应1 h后,模型油中二苯并噻吩(DBT)脱硫率为98.8%;脱硫过程符合一级动力学方程,5种硫化物的脱硫速率大小顺序为二苯并噻吩(DBT)4,6-二甲基二苯并噻吩(4,6-DMDBT)苯并噻吩(BT)2,5-二甲基噻吩(2,5-DMT)噻吩(T),其中脱除DBT和BT的反应表观活化能分别为44.16和52.10 k J/mol.该离子液体循环再生使用14次,脱硫率无明显下降.该深度脱硫方法具有操作简便及条件温和的特点.  相似文献   

10.
采用液-固相同晶取代反应制备骨架含Ga的Y型分子筛(AlY),研究其吸附脱除硫质量分数为500×10-6模拟燃料中的硫化物。AlY处理含噻吩、四氢噻吩(THT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)、二苯并噻吩(DBT)、苯并噻吩(BT)和4-甲基二苯并噻吩(4-MDBT)的模拟燃料时的吸附容量分别为7.0、17.4、14.5、16.9、6.9 和5.8mg(S)/g吸附剂。采用密度泛函理论(DFT)中的广义梯度近似方法(GGA)计算各分子中硫原子上的电荷数,噻吩、四氢噻吩、4,6-二甲基二苯并噻吩(4,6-DMDBT)、二苯并噻吩(DBT)、苯并噻吩(BT)和4-甲基二苯并噻吩(4-MDBT)中硫原子上电荷数分别为-0.159、-0.298、-0.214、-0.211、-0.193、-0.188。四氢噻吩和4,6-DMDBT中硫原子上的电子密度大于噻吩中硫原子上的电子密度,这就使得四氢噻吩和4,6-DMDBT中的硫原子与吸附位间的作用会明显大于噻吩中的硫原子与吸附位间的作用。采用AlY处理催化裂化汽油时的脱硫率可达68%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号