首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Methylation of 3-methyl-4-arylhydrazonoisoxazol-5-ones with methyl iodide affords both 2,3-dimethyl-4-arylazoisoxazol-5-ones and 3-methyl-4-(N-methylarylhydrazono)isoxazol-5-ones but with dimethyl sulfate only the former products are formed. 3-Phenyl-4-arylhydrazonoisoxazol-5-ones behave in a similar way on methylation with methyl iodide and dimethyl sulfate.  相似文献   

2.
1,2-Diaminopyridinium iodide underwent reaction with ethyl acetoacetate to form 1,4-dihydro-2-methyl-4-oxopyrido[1,2-a]pyrimidin-1-ium iodide, and with acetyl acetone it gave 2,4-dimethylpyrido[1,2-a]pyrimidin-5-ium iodide. Though 2-acetylcyclohexanone gave the corresponding 5-methyl-1,2,3,4-tetrahydropyrido[1,2-a]quinazolin-11-ium iodide, no reaction was observed with 2,6-dimethyl-3,5-heptanedione, 1-benzoylacetone, 1,3-diphenyl-1,3-propanedione and its p-methoxyphenyl derivative. However, 1-aminopyridinium iodide and acetyl acetone in the presence of base gave 3-acetyl-2-methylpyrazolo[1,5-a]pyridine and 1-amino-2-methylpyridinium iodide yielded the corresponding 3-acetyl-2,7-dimethylpyrazolo[1,5-a]pyridine. With ethyl acetoacetate, the latter salt formed 3-ethoxycarbonyl-2,7-dimethylpyrazolo[1,5-a]pyridine but with 2,6-dimethyl substituents in the pyridine ring no condensation occurred. Reaction of 1-amino-2-methylpyridinium iodide with benzaldehyde gave N-benzalimino-2-methylpyridinium iodide which, on treatment with base, resulted in the formation of 2-picoline and benzonitrile, providing a convenient method of deamination.  相似文献   

3.
Nucleophilic substitution at C3′ of 1-(2-deoxy-5-O-trityl-β-D-erythr-pentofuranosyl)-2-methoxy-5-methyl-4(1H)-pyrimidinone (5) with methyl iodide/triphenylphosphine/diethyl azodicarboxylate gave the expected inverted iodide 6 and minor epimer 7 . Treatment of 6 with lithium nitrite/phloroglucinol yielded the desired nitro derivative 8 and subsequent acidic deprotection afforded the title compound 1 . This represents a novel method for the introduction of a nitro group into the furanosyl moiety of a nucleoside. The nmr spectroscopic techniques (COSY, NOESY, nOe, HMQC and HMBC) were used to determine the stereochemistry at C3′ of the nucleosides. Spectral analysis of H-D exchange at the 3′-position of 1 did not indicate the formation of its epimer 10 .  相似文献   

4.
Studies on Polyhalides. 40. Ethyltrimethylammonium Pentaiodide (EtMe3N)I5 (EtMe3N)I5 has been prepared by the reaction of stoichiometric amounts of ethyltrimethylammonium iodide and iodine in methanol. It crystallizes in the orthorhombic space group Pna21 with a = 1011.3(1) pm, b = 1255.3(2) pm, c = 1237.7(2) pm and Z = 4. The anionic iodine partial structure is composed of puckered layers which may be derived by deforming a quadratic net with iodide ions in the knots and iodine molecules on the edges of the meshes.  相似文献   

5.
A new synthesis of 7-bromo-1,3-dihydro-3-hydroxy-5-(2′-pyridyl)-2H-1,4-benzodiazepin-2-one ( 5 ) is described. Starting from bromazepam ( 3 ), C(3) acylation with lead tetraacetate/potassium iodide in acetic acid affords 4 , while its mild hydrolysis according to our recently described method (5) gives 5 . Improved hexamine cyclization of 1 into 3 , via quaternary hexaminium salt 2 , is discussed, and identification of the intermediates 7 and 8 is performed. Compound 5 undergoes on melting, or on brief heating in glacial acetic acid, the thermal rearrangement into quinazolin-2-aldehyde ( 13 ), the structure of which is confirmed by oxidation into the ester 14 , which in turn was hydrolyzed to the acid 15 . The same compound ( 5 ) rearranges on heating with manganese(III) acetate in acetic acid into the 3-amino-2-quinolone derivative 6 . On heating in glacial acetic acid in the presence of lead tetraacetate/potassium iodide (or iodine), compound 4 , in addition to giving the aldehyde 13 , ester 14 and acid 15 rearrangement products, affords 1,2-dihydroquinazolin-2-carboxylic acid 16 .  相似文献   

6.
The rearrangement of 2-amino-3-carbethoxy-4-ethylfuro[3,2-b]pyridinium iodide in basic solution was studied. The reaction product is 2-oxo-3-cyano-4-ethyl-4H-furo[3,2-b]pyridine which was obtained also by alkylation with ethyl iodide and sodium hydride in dimethylformamide of 2-oxo-3-cyano-3H-furo[3,2-b]-pyridine or of p-nitrophenyl-3-acetoxypyridine-2-cyanacetate.  相似文献   

7.
Methylation of 5,7-dihydro-4H-pyrano[2,3-d:6,5-d']dipyrimidine-4,6(3H)-dione and its 5-phenyl analog with dimethyl sulfate in the presence of LiOH in aqueous solution gives rise to the corresponding 3,7-dimethyl derivatives. The same isomers are formed by methylation of 5-phenyl-5,7-dihydro-4H-pyrano[2,3-d:6,5-d']dipyrimidine-4,6(3H)-dione with methyl iodide in the presence of K2CO3 in N,N-dimethylacetamide. However, with ethyl bromide, propyl iodide, or butyl bromide instead of methyl iodide, mixtures of 3,7- and 1,7-dialkyl-5-phenyl-5,7-dihydro-4H-pyrano[2,3-d:6,5-d']dipyrimidine-4,6-diones were obtained.  相似文献   

8.
The action of ammonium acetate on 5-arylidene-3-phenyl-2-methylmercaptohydantoins 1g,h in acetic acid led to the formation of the 5-arylidene-3-phenylhydantoin derivatives 4a,b . In absence of a solvent, ring opening and rearrangement took place with the formation of the 5-arylidene-N2-phenylglycocyamidine derivatives 7a-c . Compounds 7a-c reacted with methyl iodide to afford the corresponding 3-methyl derivatives 9a-c . The structures of the synthesised products were established and the mechanism proposed for the rearrangement reaction was discussed.  相似文献   

9.
The reaction of 5‐(1‐pyrrolyl)‐4‐methyl‐2‐phenylthieno[2, 3‐d]pyrimidine carbohydrazide 5 with CS2 in the presence of pyridine afforded the 6‐(2, 3‐dihydro‐2‐mercapto‐1, 3, 4‐oxadiazol‐5‐yl)‐4‐methyl‐5‐(1‐pyrrolyl)‐2‐phenylthieno[2, 3‐d]pyrimidine 6 , which reacted with methyl iodide in the presence of sodium methoxide to yield the 6‐(2‐methylthio‐1, 3, 4‐oxadiazol‐5‐yl)‐4‐methyl‐5‐(1‐pyrrolyl)‐2‐phenyl‐thieno[2, 3‐d]pyrimidine 7. The 6‐(2‐substituted‐1, 3, 4‐oxadiazol‐5‐yl)‐2‐phenylthieno[2, 3‐d]pyrimidine derivatives 9, 11 and 13 were obtained by the condensation of 6‐(2‐methylthio‐1, 3, 4‐oxadiazol‐5‐yl)‐2‐phenylthieno[2, 3‐d]pyrimidine 7 with appropriate secondary amines. The structure of the new compounds was substantiated from their IR, UV‐vis spectroscopy, 1H NMR, mass spectra, elemental analysis and X‐ray crystal analysis.  相似文献   

10.
2-Thioxo-1,2-dihydropyridine derivatives 2a, 2b were reacted with methyl iodide to give 2-methylthiopyridines 3a, 3b, which were reacted with hydrazine hydrate to produce 3-aminopyrazolo[5,4-b]pyridines 4a, 4b. Compounds 4a, 4b were diazotized to afford the corresponding diazonium salts 5a, 5b, which were reacted with some active methylene compounds 6a-6h to give the corresponding pyrido[2′,3′ : 3,4]pyrazole[5,1-c][1,2,4]triazines 7-14.  相似文献   

11.
Treatment of 3,5-dimethoxy-1,2,4-triazine ( 1a ) with methyl iodide was found to give depending on the reaction time triazinium iodide 2a , triaziniumolates 4a and 6a as well as methoxytriazinones 7a and 8a . Thermolysis of 2a gave triaziniumolates 4a and 6a . Reaction of 2a , 4a or methoxytriazinone 9a with methyl iodide in acetonitrile yielded as the sole product 6a . Reaction of 3-methoxy-5-methylthio-1,2,4-tri-azine (1b ) with methyl iodide gave triazinium iodide 2b and methylthio triazinone 7b . Hydrolysis of 2a,b afforded 4a . Reaction of 5-methoxy-3-methylthio-1,2,4-triazine ( 1c ) with methyl iodide gave triazinium iodide 2c , triaziniumolate 4b , triazinium iodide 5b and triazinone 8b . Hydrolysis of 2c yielded 4b and its thermolysis gave a mixture of 4b and 5b . Reaction of 2c , 4b and triazinone 9b with methyl iodide afforded 5b . Treatment of 3,5-bis(methylthio)-1,2,4-triazine ( 1d ) with methyl iodide was found to give a mixture of N1 and N2 methiodides 2d and 3d which gave on hydrolysis 4b and 8b , respectively. Methylation of 6-methyl derivatives 1c-g gave analogous results, however the proportions of N1 methylated products were lower and the reaction rates higher in comparison to their respective lower homologues 1a,c,d . The structures of the mesoionic dimethyl derivatives were assigned from uv, ir, 1H nmr and electron impact mass spectra. The structural assignments were eventually confirmed by quantum chemical calculations of net charge distributions, bond lengths and ipso angles of the C5?O bonds.  相似文献   

12.
Starting from α-oxoketene dithioacetals the 3-methyithio-1,5-pentenedione enolates 4 obtained from ketones 3 give 4-methylthio-2(1H)-pyridinethiones with isothiocyanates. Enolates 4 can be alkylated with methyl iodide at C-2, giving 5-methyl-4-methylthio-2-(1H)-pyridmethiones with isothiocyanates. The S-alkylated pyridinethiones react with the anion of malodinitrile, giving 4-(1,1-dicyanomethylene)-1,4-dihydropyridines.  相似文献   

13.
The reactions of the 3-substituted 4-amino-8-ethoxycarbonyl[5,1-c][1,2,4]triazines 1 and 2 with o-amino-phenol hydrochloride gave the pyrazolo[1′,5′:3,4][1,2,4]triazino[5,6-b][1,5]benzoxazepines 5 and 8 . The alkylation of 5 with methyl iodide and isopropyl iodide afforded the 6-alkoxylpyrazolo[1′,5′:3,4][1,2,4]triazino-[5,6-b][1,5]benzoxazepines 6a and 6b , respectively. Refluxing of 5, 6a, 6b and 8 in hydrochloric acid/acetic acid resulted in ring transformation to produce the spiro[benzoxazole-2′(3′H),4(1H)pyrazolo[5,1-c][1,2,4]-triazines] 7a, 7b and 9 . The screening data of the above compounds was described.  相似文献   

14.
Diethyl [2-(3- or 4-pyridinyl)-4-pyrimidinyl]aminomethylenemalonates 5 prepared by the reaction between 2-(3- or 4-pyridinyl)-4-pyrimidinamines 3 and diethyl ethoxymethylenemalonate ( 4 ) were thermally cyclized to afford ethyl 5,8-dihydro-5-oxo-2-(3- or 4-pyridinyl)pyrido[2,3-d]pyrimidine-6-carboxylates 6 . The later were alkylated with ethyl iodide and then saponified to give 5,8-dihydro-8-ethyl-5-oxo-2-(3- or 4-pyridinyl)pyrido-[2,3-d]pyrimidine-6-carboxylic acids 2 . Thermal cyclization of diethyl (2-hydroxy-4-pyrimidinyl)amino-methylenemalonate ( 8 ) gave ethyl 1,6-dihydro-4,6-dioxo-4H-pyrimido[1,6-a]pyrimidine-3-carboxylate ( 10 ) instead of ethyl 5,8-dihydro-2-hydroxy-5-oxopyrido[2,3-d]pyrimidine-6-carboxylate ( 9 ) as previously claimed.  相似文献   

15.
The reaction of ethyl 4-chloro-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxylate with p-toluene-sulfonylhydrazide at room temperature in the system DMSO/K2CO3 gives 5-methyl-2-(toluene-4-sulfonyl)-1,2-dihydro-5H-pyrazolo[4,3-c]quinoline-3,4-dione, alkylation of which using ethyl iodide gives the 1N-substituted derivative. For Communication 150 see [1]. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 59-66, January, 2009.  相似文献   

16.
A comparative study of reactions of 3-methyl-5-phenylisoxazole and 3-methyl-5-phenylisothiazole with electrophilic compounds in the presence of n-BuLi, LICA or LICA-TMEDA is reported. By using LICA-TMEDA, regioselective reactions of the heterocyclic compounds at the C-3 methyl group are obtained. With n-BuLi or LICA and the isoxazole derivative a product mixture at the C-4 position and the C-3 methyl group is found. In the case of isothiazole compound, only with methyl iodide and n-BuLi, the dialkylated product at both positions is formed.  相似文献   

17.
The addition of aryl Grignard reagents to the 1-phenoxycarbonyl salt of 3-bromopyridine affords 2-aryl-5-bromo-1-phenoxycarbonyl-1,2-dihydropyridines and 4-aryl-3-bromo-1-phenoxycarbonyl-1,4-dihydropyridines. The crude dihydropyridines were aromatized with o-chloranil in refluxing toluene to give 4- and 6-aryl-3-bromopyridines. The regioselectivity of this two-step process, 6- vs. 4-substitution, was examined and found to be dependent upon the structure of the Grignard reagent. Unhindered aryl Grignard reagents, e.g., phenyl and 2-naphthyl, gave mainly 6-aryl-3-bromopyridines (49-52%) along with 9% of the 4-substituted isomer and less than 4% of the 2-aryl-3-bromopyridine. Hindered aryl Grignard reagents, e.g., o-tolyl and 1-naphthyl, are less regioselective. When a catalytic amount of cuprous iodide is present during the Grignard reaction, nearly exclusive 1,4-addition results. The crude 4-aryl-3-bromo-1,4-dihydropyridines were aromatized with p-chloranil to provide 4-aryl-3-bromopyridines in good yield and high isomeric purity. The sequential use of the cuprous iodide-catalyzed Grignard reaction and the “normal” Grignard reaction provided a regiospeci-fic synthesis of 3-bromo-6-(p-methoxyphenyl)-4-phenylpyridine from 3-bromopyridine.  相似文献   

18.
N′-(4-Oxo-1,4-dihydronaphthalen-1-ylidene)-1-phenyl-5-oxopyrrolidine-3-carbohydrazides and N′-(3-methyl-4-oxo-1,4-dihydronaphthalen-1-ylidene)-1-phenyl-5-oxopyrrolidine-3-carbohydrazides were synthesized by reactions of 5-oxo-1-phenylpyrrolidine-3-carbohydrazides with 1,4-naphthoquinone or 2-methyl-1,4-naphthoquinone. The alkylated analogues of the above products were obtained using ethyl iodide. The interaction of 5-oxo-1-phenylpyrrolidine-3-carbohydrazides with 2,3-dichloro-1,4-naphthoquinone was followed by formation of N′-(3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-1-phenyl-5-oxopyrrolidine-3-carbohydrazides. All these compounds were characterized using 1H, 13C NMR, IR and mass spectra. Some of the new compounds were tested for the antimicrobial and antifungal activity.  相似文献   

19.
We have synthesized 3-substituted 4-alkyl-5-imino-4,5-dihydro-1,2,4-thiadiazoles by reaction of 3-alkyl(benzyl)thio-5-amino-1,2,4-thiadiazoles with methyl iodide or ethylene chlorohydrin. In the reaction with epichlorohydrin, addition of an oxirane molecule occurs with formation of tetrahydropyrimido[2,1-b]-1,2,4-thiadiazoles.  相似文献   

20.
Condensation of 2-amino-4-hydroxy-2-mercaptopyrimidine (2) hydrate and ethyl 4-bromocrotonate gave a mixture of ethyl 7-amino-2,3-dihydro-5-oxo-5H-thiazolo[3,2-a]pyrimidine-3-acetate (4) and 2a,3-dihydro-1-thia-5,8,8b-triazaacenaphthylene-4,7(2H)-dione (5) whereas reaction of 2 with 4-bromocrotononitrile afforded only 7-amino-2,3-dihydro-5-oxo-5H-thiazolo[3,2-a] pyrimidine-3-acetonitrile. Reaction of the tricycle 5 (which was isolated as a hemihydrate) with excess methyl iodide/potassium carbonate in dimethylformamide resulted in both ring hydrolysis and methylation to give 3,4-dihydro-1,7-dimethyl-4- [(methylthio)methyl]-2H-pyrimido[1,6-a]pyrimidine-2,6,8(1H,7H)-trione (10). Methylating 5 with excess methyl iodide/sodium methoxide in methanol also resulted in ring fragmentation and methylation but instead afforded methyl 7-methyl-amino-2,3-dihydro-5-oxo-7H-thiazolo[3,2-a]pyrimidine-3-acetate. The mechanistic aspects of these reactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号