首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanostructured tin dioxide (SnO2) powders were prepared by a sol-gel dialytic process and and the doping of CuO on it was completed by a deposition-precipitation method. The thick film sensors were fabricated from the CuO/SnO2 polycrystalline powders. Sensing behavior of the sensor was investigated with various gases including CO, H2, NH3, hexane, acetone, ethanol, methanol and H2S in air. The as-synthesized gas sensor had much better response to H2S than to other gases. At the same time, the CuO/SnO2 sensor had enough sensitivity, together with fast response and recovery, to distinguish H2S from those gases at 160 and 210 ℃. Therefore, it might have promising applications in the future.  相似文献   

2.
Nanostructured tin dioxide (SnO2) powders were prepared by a sol-gel dialytic process and and the doping of CuO on it was completed by a deposition-precipitation method.The thick film sensors were fabricated from the CuO/SnO2 polycrystalline powders.Sensing behavior of the sensor was investigated with various gases including CO,H2,NH3,hexane,acetone,ethanol,methanol and H2S in air.The as-synthesized gas sensor had much better response to H2S than to other gases.At the same time,the CuO/SnO2 sensor had enough sensitivity,together with fast response and recovery,to distinguish H2S from those gases at 160 and 210 ?C.Therefore,it might have promising applications in the future.  相似文献   

3.
采用溶剂热方法, 以SnCl4·5H2O/尿素/乙醇三元体系合成了具有特定结构的前驱体, 该前驱体经焙烧后得到了具有海绵状结构的介孔SnO2. 利用X射线粉末衍射(XRD)、傅立叶红外吸收光谱(FT-IR)、透射电镜(TEM)、热分析(TG-DTA)和氮气等温吸附鄄脱附等方法对产物的结构、形貌和热稳定性进行表征. 结果表明, 300 ℃焙烧处理后的样品由粒径约为5 nm的纳米粒子堆积而形成海绵状结构, 其中孔的尺寸范围在2-8 nm, 样品比表面积达到了134 m2·g-1.  相似文献   

4.
Dispersion polymerization of acrylamide at 40 degrees C in t-butyl alcohol-water media of varying composition (50 to 90 vol% alcohol) using a partial isopropyl ester of poly(vinyl methyl ether-alt-maleic anhydride) as the stabilizer has been studied. The isopropyl ester derivative proves to be a better stabilizer than its precursor polymer. However, the particles were polydisperse in size. The number average diameter of the particles increases linearly with the solubility parameter of the dispersion medium. Dispersions of nanoparticles of polyacrylamide are produced when the t-butyl alcohol content of the dispersion medium is 90% by volume. Comparison of the particle diameter measured by transmission electron microscopy with that measured by dynamic light scattering in acetone reveals a thickness of the hairy stabilizer layer on the dispersion particles of 31 nm.  相似文献   

5.
A series of Co3O4-loaded SnO2 nanocomposite thick films were prepared by grinding, screen-printing and sintering at 700 ±C for 3 h. XRD data showed the nanocomposite thick films were rutile structure of SnO2 and cubic Co3O4. The composite films were found to exhibit good response to alcohol and acetone at 300 ±C. The film went through a sharp sensitivity maximum at 5 mol%CoO4=3 with a change in Co3O4 content. At 300 ±C, the maximum sensor response to alcohol and acetone, each 1000 ppm in air, was 301 and 235, respectively, which was about 7 and 5 times as large as that of the pure SnO2 respectively. The selectivity to alcohol and acetone over H2 and CO also was promoted by the addition of Co3O4 to SnO2. The mechanism of such strong promotion of sensor response (electronic sensitization) is discussed.  相似文献   

6.
Low-density tin dioxide (SnO2) is required for radiating monochromatic extreme ultraviolet (EUV) light with low debris and high conversion efficiency from a laser. In this paper, tin dioxide nanoparticle hollow microcapsules were successfully fabricated by a layer-by-layer template technique. The obtained capsules have a rougher surface (30 nm in rms) compared to the freshly prepared polyelectrolyte capsules. Based on the X-ray diffraction (XRD) results, the tin dioxide nanoparticles well maintained their size after they were assembled on the capsules' surfaces. In order to remove the polymer template, a heat treatment was introduced, and after the heat treatment the capsule sizes shrank about 71% (the average size was from 4.9 to 3.5 mum), and the obtained capsules maintained their round shape after water evaporation. The narrowest bandwidth at the 13.5 nm emission in the EUV region was observed when the capsules were irradiated by a CO2 laser with an intensity of 2.9 x 10(10) W/cm (2).  相似文献   

7.
Steric stabilization and flocculation of colloids with surface-grafted poly(dimethylsiloxane) (PDMS) chains are examined in liquid and supercritical carbon dioxide with and without hexane as a cosolvent. Neither poly(methyl methacrylate) (PMMA) nor silica particles with grafted 10,000 g/mol PDMS could be stabilized in pure CO(2) at pressures up to 345 bar at 25 degrees C and 517 bar at 65 degrees C without stirring. The addition of 15 wt% hexane to CO(2) led to stable dispersions with sedimentation velocities of 0.2 mm/min for 1-2 μm PMMA particles. The critical flocculation pressure of the colloids in the hexane/CO(2) mixture, determined from turbidity versus time measurements, was found to be the same for silica and PMMA particles and was well above the upper critical solution pressure for the PDMS-CO(2) system. The addition of a nonreactive cosolvent, hexane, eliminates flocculation of PMMA particles synthesized through dispersion polymerization in CO(2) with PDMS-based surfactants. Copyright 2000 Academic Press.  相似文献   

8.
Opal-like materials based on tin dioxide were prepared, and their structural and sensor characteristics were studied. The optical transmission spectra of opal-like structures based on SnO2 were recorded, and the volume fraction occupied in them by tin dioxide was estimated. It was shown that structures based on SnO2 contained a photon stop-zone in the visible spectrum range. The sensor properties of the materials toward CO and H2 were studied over the temperature range 375−425°C. The SnO2 samples studied had much higher sensitivity to CO compared with SnO2 materials without opal-like structures.  相似文献   

9.
Alumina-supported Au particles (1.16 wt %) were prepared by a deposition-precipitation method involving a HAuCl4 precursor. X-ray absorption spectroscopy at the Au L(III) edge was used to monitor the evolution of the Au oxidation state and atomic structure during pretreatment in He up to 623 K. Although the as-prepared material had Au present in a +3 oxidation state, thermal treatment at 623 K facilitated autoreduction of Au cations to metal particles. Analysis of the EXAFS revealed a coordination number (Au-Au) of 7.2, which is consistent with spherical particles of 1.2 nm in average diameter. Steady-state isotopic transient kinetic analysis was used to evaluate the intrinsic turnover frequency (TOF intr) and the surface coverage of carbon-containing species (theta COx) on the gold catalyst during CO oxidation at 1.2 atm total pressure and 296 K. The artifacts in the kinetic parameters caused by re-adsorption of product carbon dioxide were removed by varying the total flow rate. The values of TOF intr and theta COx determined from the intrinsic lifetime of surface intermediates at infinite flow rate were 1.6 s(-1) and 4.9%, respectively. The intrinsic turnover frequency was nearly independent of temperature, indicating a very low activation energy for the reaction. However, the rate was significantly accelerated by the presence of water.  相似文献   

10.
Nanocrystalline tin dioxide modified by Pd and Pt clusters or by bimetallic PdPt nanoparticles was synthesized. Distribution of the modifers on the SnO2 surface was studied by high-resolution transmission electron microscopy and energy dispersive X-ray microanalysis with element distribution mapping. It was shown that the Pd/Pt ratio in bimetallic particles varies over a broad range and does not depend on the particle diameter. The effect of platinum metals on the reducibility of nanocrystalline SnO2 by hydrogen was determined. The sensing properties of the resulting materials towards 6.7 ppm CO in air were estimated in situ by electrical conductivity measurements. The sensor response of SnO2 modified with bimetallic PdPt particles was a superposition of the signals of samples with Pt and Pd clusters.  相似文献   

11.
The barium ferrite ultrafine particles were synthesized by coprecipitation in an aqueous solution with polyacrylic acid (PAA) as a protective agent. Thermal analysis by TGA/DTA showed that the precursor could yield barium ferrite after calcination above 700 degrees C for 2 h. By analyses of the XRD and electron diffraction pattern, the formation of pure barium ferrite was confirmed and the appropriate molar ratio of Ba/Fe in aqueous solution was determined to be 1/11. The TEM measurements indicated that the average diameter of the precursor was 4.5 nm, and the diameters of the particles calcined at 700 and 800 degrees C were 23-34 and 49-82 nm, respectively. The magnetic properties characterized by a SQUID magnetometer showed that the barium ferrite ultrafine particles calcined at 700-800 degrees C had a saturation magnetization of 36.9-60.8 emu/g, a remanent magnetization of 19.0-31.0 emu/g, a coercivity of 117.3-221.8 Oe, and a squareness ratio of 0.51. The magnetization was also observed to increase with a decrease of temperature at 5-400 K. These magnetic properties all reflected the nature of ultrafine particles and also were influenced by the morphology and microstructure of final products. Copyright 2001 Academic Press.  相似文献   

12.
氯化铵对TiO2纳米晶的形成、 结构及性能的影响   总被引:2,自引:0,他引:2  
以四氯化钛为原料, 通过氯化铵诱导晶化和热挥发分解法制备了二氧化钛纳米晶, 经粉末XRD, TEM, IR和比表面积及热重分析等手段进行了表征. 通过对粒子生长动力学分析, 在700 ℃以下存在两种生长势, 400 ℃时出现转折, 400 ℃以下粒子生长所需活化能为8.23 kJ/mol; 400 ℃以上粒子生长需活化能为45.71 kJ/mol. 于200 ℃时灼烧样品的表面积最大, 对甲基橙光催化降解活性最高.  相似文献   

13.
An economical mesoporous aluminosilicate was synthesized with microcline as starting material and the precursor 13X zeolite as seed for crystal structure on mesoporous walls. In this method, a mixture of microcline and Na2CO3 with a molar ratio of 1:1.05 was first calcined at 1093 K for 2.5 h. The calcined materials were mixed with 35 ml C16TMABr aqueous solution (containing 8.2 g C16TMABr) and the precursors of 13X zeolite, resulting in mesoporous aluminosilicate after crystallization of the solution at 378 K for 48 h and calcination of the powder at 823 K for 5 h. The as-synthesized sample has a uniform pore diameter distribution centered at 3.7 nm. The as-synthesized sample had BET surface area of 725 m2/g and BJH mean pore diameter of 3.7 nm. The FT-IR results revealed that the building units of 13X zeolite were inserted into the pore walls of the as-synthesized sample. The adsorption ratio of mercury(II) onto the as-synthesized adsorbent was about 95%. The adsorption process was found to be spontaneous and can be explained by particle diffusion and chemical ion-exchange mechanisms. The equilibrium concentration of mercury(II) using the as-synthesized sample as the adsorbent was under 1 microg/L, making the concentration of mercury meet the limit for drinking water in China as recommended by the World Health Organization.  相似文献   

14.
Bimetallic colloidal dispersions were obtained by simultaneous cocondensation of nickel and tin atoms with organic solvents at 77 K using the chemical liquid deposition (CLD) method. The atoms in a 1:1 ratio were produced by resistive heating and were reacted with 2-propanol, 2-methoxyethanol, and acetone to produce colloids.The kinetic stability of the colloid dispersions was related to the solvation effect of organic molecules, e.g., low stability for acetone, higher for 2-propanol, and the highest for 2-methoxyethanol. The colloidal particles were characterized by UV-Vis measurements showing absorption bands at 204 and 270 nm. A 3-day study in which samples were taken every hour showed that the absorption bands decrease probably due to clustering. Electrophoretic measurements revealed that the particles are weakly positively charged. Transmission electron microscopy studies revealed an average particle size distribution ranging from 6 to 10 nm depending on the solvent. Most of the colloids exhibit a spherical shape with some degree of agglomeration.After solvent evaporation several active solids were obtained. The FTIR spectra show the presence of the solvent incorporated in the active solids/films, e.g., for acetone the carbonyl stretching is observed at 1723 cm–1. The thermal stability of these bimetal powders/films was studied by TGA up to 550 °C. Their maximum decomposition temperatures are 350, 415, and 429 °C for NiSn–2-methoxyethanol, –2-propanol, and –acetone, respectively.  相似文献   

15.
Sensors with gas-sensing layers based on tin dioxide with nanosized catalytic additives of palladium, platinum, antimony, and lanthanum have been used to determine ethanol and acetone vapors in air. The use of nonstationary temperature modes, allowed us to reach record-breaking low detection limits for acetone (∼0.1 ppm). For the first time ethanol and acetone have been selectively determined with a single sensor.  相似文献   

16.
Tin dioxide is one of the most widely used semiconductor gas sensor to detect reducing gases1-3. The sensing mechanism of SnO2 is usually based on the change of the resistance of the sensor in different gas environment. In air, the surface-adsorbed oxygen species on the surface of SnO2 act as surface acceptors of electrons, hence diminishing the conductivity of SnO2. However, when reducing gases such as H2, CO, or CH4 are introduced in the air stream, the resistance of the SnO2 sensor is …  相似文献   

17.
Nanoparticles of tin oxide (SnO2) have been prepared from water-in-oil microemulsions consisting of water, AOT (surfactant), and n-heptane (oil). Precursor hydroxides were precipitated in the aqueous cores of water-in-oil microemulsions and then calcined at 600 degrees C for 2 h to form tin oxide powder. The formation of phase pure tin oxide was confirmed by means of X-ray diffraction analysis. The tin oxide powder was found to be less than 40 nm in particle diameter and to have a higher specific surface area, about 73 m2/g, when compared with tin oxide powder prepared through the conventional precipitation method (19 m2/g). Copyright 1999 Academic Press.  相似文献   

18.
W/O型微乳法制备淀粉基纳米粒   总被引:8,自引:0,他引:8  
在正己烷、Span-60和NaOH水溶液的W/O型淀粉微乳液中,进行淀粉与环氧氯丙烷交联反应制备淀粉微球,用质量分数为1%的淀粉水浆液制备出微球的流体力学半径Rb为7.08—113nm,其中粒径不超过100nm的纳米粒在整个微粒体系中占69%,平均粒径为92.2nm。TEM和DLS结果表明,制得的微粒呈圆球形,且微粒的流体力学半径随淀粉水浆液浓度的增加而增大并分布变宽,淀粉水浆液的浓度低有利于淀粉基纳米粒的形成。  相似文献   

19.
SnO2/Pd nanocomposites were synthesized via sol-gel method followed by variable processing procedures. The materials are sensitive to CO gas in the concentration range 2-100 ppm at room operating temperature. It was shown that modification of nanocrystalline tin dioxide by Pd changes the temperature dependence of sensor response, decreasing the temperature of maximal signal. To understand the mechanism of room temperature CO sensitivity, a number of SnO2/Pd materials were characterized by XRD, TEM, BET, XPS and TPR techniques. From the results of FTIR, impedance and sensing measurements under variable ambient conditions it was concluded that improvement in CO sensitivity for Pd-modified SnO2 is due to alteration of CO oxidation pathway. The reaction of CO with surface OH-groups at room temperature was proposed, the latter being more reactive than oxygen species due to the possible chain character of the reactions. It was proposed that Pd additive may initiate chain processes at room temperature.  相似文献   

20.
Preparation processes for Pt-deposited TiO(2) (Pt/TiO(2)) by the synthesis of Pt nanoparticles and their deposition were pursued by transmission electron microscopy, extended X-ray absorption fine structure, UV-vis spectroscopy, and Fourier transform infrared spectroscopic studies. Colloidal dispersions of Pt particles stabilized by poly(N-vinyl-2-pyrrolidone) (PVP) were photochemically synthesized in aqueous ethanol solution. The average diameter of Pt particles was estimated to be 2.0 +/- 0.5 nm, which was almost unchanged by changing the reducing agent from ethanol to methanol and 2-propanol. The PVP-stabilized Pt particles were distributed over a TiO(2) surface only by mixing the Pt colloidal dispersions and TiO(2). CO was chemically coordinated on the Pt particles on a TiO(2) surface after heat treatment was carried out in an O(2) flow at 673 K to completely remove the residual PVP on Pt/TiO(2). Hydrogen reduction at 473 K did not increase the amount of CO adsorbed on Pt sites. The Pt/TiO(2) catalyst after the oxidation treatment showed higher activity for CO photooxidation than that obtained for pure TiO(2) catalyst. The CO photooxidation rate was not unchanged by the H(2) reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号