首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lanthanide upconversion luminescence in nanoparticles has prompted continuous breakthroughs in information storage, temperature sensing, and biomedical applications, among others. Achieving upconversion luminescence at the molecular scale is still a critical challenge in modern chemistry. In this work, we explored the upconversion luminescence of solution dispersions of co-crystals composed of discrete mononuclear Yb(DBM)3Bpy and Eu(DBM)3Bpy complexes (DBM: dibenzoylmethane, Bpy: 2,2′-bipyridine). The 613 nm emission of Eu3+ was observed under excitation of Yb3+ at 980 nm. From the series of molecular assemblies studied, the most intense luminescence was obtained for a 1 : 1 molar ratio of Yb3+ : Eu3+, resulting in a high quantum yield of 0.67 % at 2.1 W cm−2. The structure and energy transfer mechanism of the assemblies were fully characterized. This is the first example of an Eu3+-based upconverting system composed of two discrete mononuclear lanthanide complexes present as co-crystals in non-deuterated solution.  相似文献   

2.
Metal-based upconversion luminescence transforming high-energy photons into low-energy photons is an attractive anti-Stokes shift process for fundamental research and promising applications. In this work, we developed the upconversion luminescence in co-crystal assemblies consisting of discrete mononuclear Yb and Sm complexes. The characteristic visible emissions of Sm3+ were observed under the excitation of absorption band of Yb3+ at 980 nm. A series of co-crystal assemblies were investigated based on mononuclear Yb and Sm complexes, and the strongest luminescence was obtained when the molar concentration between Yb3+ and Sm3+ is equivalent. The crystal structure was fully characterized by the single crystal X-ray diffraction and upconverting energy transfer mechanisms were verified as cooperative sensitization upconversion and energy transfer upconversion. This is the first example of Sm3+-based upconverting luminescence in discrete lanthanide complexes which present as co-crystal assemblies at room temperature.  相似文献   

3.
Transparent SiO2-Al2O3-NaF-YF3 bulk nano-composites triply doped with Ho3+, Tm3+ and Yb3+ were fabricated by melt-quenching and subsequent heating. X-ray diffraction and transmission electron microscopy measurements demonstrated the homogeneous precipitation of the β-YF3 crystals with mean size of 20 nm among the glass matrix, and rare earth ions were found to partition into these nano-crystals. Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb3+ to Ho3+ or Tm3+. Various colors of luminescence, including bright perfect white light, can be easily tuned by adjusting the concentrations of the rare earth ions in the material. The overall energy efficiency of the white-light upconversion was estimated to be about 0.2%.  相似文献   

4.
The structural and optical properties of the Er3+-Tm3+-Yb3+codoped CaMoO4 phosphors prepared by chemical route have been explored. The crystalline structures of the prepared phosphors have been investigated with the help of X-ray diffraction analysis. The presence of different vibrational modes and absorption bands arising due to the transitions from the ground state to different excited states of rare earth ions have been identified using the Raman and UV-VIS-NIR absorption spectra of the developed phosphor, respectively. The concentration quenching effect on the luminescence property of the prepared materials has been explained in detail. The upconversion luminescence property of the Er3+-Tm3+-Yb3+codoped CaMoO4 phosphor annealed at different temperatures under 980 nm and 808 nm excitations have been reported. The energy transfer Er3+ → Tm3+, Yb3+ → Er3+ and Tm3+ has been found to be responsible for efficient UC emission. The dipole-dipole interaction is observed to be responsible for the concentration quenching of the luminescence intensity. The effect of annealing temperature on the upconversion luminescence property has been explained in detail. The results suggest that the developed tri-doped phosphor may be suitable in making the efficient NIR to visible upconverter and lighting based optical devices.  相似文献   

5.
Er3+–Yb3+ co‐doped Lu3Ga5O12 nanogarnets were prepared and characterized; their structural and luminescence properties were determined as a function of the Yb3+ concentration. The morphology of the nanogarnets was studied by HRTEM. Under 488 nm excitation, the nanogarnets emit green, red, and near‐infrared light. The decay curves for the (4S3/2, 2H11/2) and 4F9/2 levels of the Er3+ions exhibit a non‐exponential nature under resonant laser excitation and their effective lifetimes are found to decrease with an increase in the Yb3+ concentration from 1.0 to 10.0 mol %. The non‐exponential decay curves are well fitted to the Inokuti–Hirayama model for S=8, indicating that the mechanism of interaction for energy transfer between the optically active ions is of dipole–quadrupole type. Upon 976 nm laser excitation, an intense green upconverted emission is clearly observed by the naked eyes. A significant enhancement of the red‐to‐green intensity ratio of Er3+ ions was observed with an increase in Yb3+ concentration. The power dependence and the dynamics of the upconverted emission confirm the existence of two‐photon upconversion processes for the green and red emissions.  相似文献   

6.
Tb3+, Yb3+, Tm3+, Er3+, and Ho3+ doped Ca3(PO4)2 were synthesized by solid-state reaction, and their luminescence properties were studied by spectra techniques. Tb3+-doped samples can exhibit intense green emission under VUV excitation, and the brightness for the optimal Tb3+ content is comparable with that of the commercial Zn2SiO4:Mn2+ green phosphor. Under near-infrared laser excitation, the upconversion luminescence spectra of Yb3+, Tm3+, Er3+, and Ho3+ doped samples demonstrate that the red, green, and blue tricolored fluorescence could be obtained by codoping Yb3+-Ho3+, Yb3+-Er3+, and Yb3+-Tm3+ in Ca3(PO4)2, respectively. Good white upconversion emission with CIE chromaticity coordinates (0.358, 0.362) is achieved by quadri-doping Yb3+-Tm3+-Er3+-Ho3+ in Ca3(PO4)2, in which the cross-relaxation process between Er3+ and Tm3+, producing the 1D2-3F4 transition of Tm3+, is found. The upconversion mechanisms are elucidated through the laser power dependence of the upconverted emissions and the energy level diagrams.  相似文献   

7.
We report the synthesis of tetragonal-phase LiYF4 nanoparticles doped with upconverting lanthanide ions. The nanoparticles have been characterized by XRD, TEM, and luminescence decay studies. The size of the as-synthesized LiYF4 nanoparticles can be tuned by varying the precursor ratio of F to lanthanide ions. Passivated by oleic acid ligands, the LiYF4 nanoparticles can be readily dispersed in a wide range of nonpolar solvents including hexane, cyclohexane, dichloromethane, and toluene. The lanthanide-doped (Yb3+, Er3+, Tm3+, Ho3+) LiYF4 nanoparticles show intense upconversion emissions upon near infrared excitation at 980 nm. By varying composition and concentration of the dopant ions, the color output can be precisely modulated under single wavelength excitation with a diode laser.  相似文献   

8.
Anatase TiO2 nanobelts doped with rare earth (RE) ions Yb3+, Er3+ or Yb3+/Er3+ have been prepared using layered titanate nanobelts (LTO NBs) with RE ions as the precursor obtained by ion-exchange between LTO NBs and RE ions under hydrothermal process. Various measurement results demonstrate that the RE ions have doped into the lattice of TiO2, and the Er3+ or Yb3+/Er3+ doped nanobelts show strong visible up-conversion (UC) fluorescence under 980 nm excitation. The UC emission intensity of LTO NBs embedded with Er3+ or Yb3+/Er3+ is slightly higher than that of the corresponding TiO2 nanobelts doped with RE ions, whereas higher RE doping content leads to the decrease of UC emission intensity due to the concentration-quenching effect.  相似文献   

9.
Synthesis, characterization, and in vitro toxicity evaluation of upconversion luminescence NaLuF4:Yb3+/Tm3+ nanoparticles (UCLNPs) are reported in the current study. Initially, the synthesized lanthanide trifluoroacetate (Ln(OOCCF3)3) precursor was used to fabricate NaLuF4 nanoparticles doped with Yb3+ and Tm3+ metal ions. The nanoparticles were coated with calcium carbonate (CaCO3) after removing the hydrophobic species on them to enhance their biocompatibility. The in vitro methylthiazolyldiphenyl-tetrazoliumbromide (MTT) test was used to evaluate the toxicity of synthesized NaLuF4:Yb3+/Tm3+ nanoparticles (NLF-5) on L929 mouse fibroblast cell lines. The transmission electron microscopy image showed that the particle size of NaLuF4:Yb3+/Tm3+ was 32 nm. The synthesized NLF-5 nanoparticles have both α-cubic and β-hexagonal crystalline structures that provided a superb near-infrared-to-near-infrared upconversion luminescence signal when excited at 980 nm. MTT test results show that the death of L929 fibroblast cells was observed only at concentrations above 250 μg/mL of NaLuF4:Yb3+/Tm3+ nanoparticles. In addition, with an increase in patrol time of 24, 48, and 72 hr, cell toxicity increased significantly, while the coated nanoparticles did not have any toxic effects. The synthesized nanoparticles could be used as a suitable material for medical applications due to their small particle size, high photoluminescence emission intensity, and low toxicity.  相似文献   

10.
A new class of lanthanide‐doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium‐enriched core–shell NaErF4:Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+‐Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700‐fold enhancement) and near‐infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red‐emitting upconversion nanoprobes for biological applications.  相似文献   

11.
We present recent results on frequency upconversion (UPC) obtained in fluoroindate glasses (FIG) doped with Ho3+, Tm3+ and Nd3+ ions and codoped with Pr3+/Nd3+ and Yb3+/Tb3+ ions. The results for the Ho3+-doped samples show strong evidence of energy transfer (ET) between Ho3+ ions resonantly excited at 640 nm. The origin of the blue-green upconverted fluorescence observed was identified and the dynamics of the signals revealed the pathways involved in the UPC process. In the case of Tm3+-doped FIG, the samples were resonantly excited at 650 nm and the main mechanism that contributes for the red-to-blue upconversion is excited-state absorption (ESA). The FIG samples codoped with Pr3+/Nd3+ were excited at 588 nm in resonance with transitions starting from the ground state of the Nd3+ and the Pr3+ ions. It was observed that the presence of Nd3+ ions enhanced the Pr3+ emission at 480 nm by two orders of magnitude. Multiphonon (MP)-assisted upconversion is also discussed for Nd3+-doped FIG pumped at 866 nm. Emission at 750 nm with a peculiar linear dependence with the laser intensity was observed and explained. A rate-equation model that includes MP absorption via thermally coupled electronic excited states of Nd3+ was developed and describes well the experimental results. The role played by effective phonon modes is clearly demonstrated. MP-assisted UPC process was also studied in Yb3+/Tb3+-codoped FIG samples excited at 1064 nm, which is off-resonance with electronic transitions starting from the ground state. It was determined that the mechanism leading to Tb3+ emission in the blue is due to ET from a pair of excited Yb3+ ions followed by ESA in the Tb3+ ions.  相似文献   

12.
Tb3+–Yb3+ co-doped Ca5(PO4)3F inverse opal photonic crystals were prepared by a self-assembly technique in combination with a sol–gel method. Upconversion luminescence characteristics of the inverse opals were investigated. The results indicate that photonic band gap has a significant effect on upconversion luminescence of Tb3+–Yb3+ co-doped Ca5(PO4)3F inverse opal. Significant inhibition of the green or blue upconversion luminescence was inspected if the photonic band gap overlapped with the emission band of Tb3+ ions.  相似文献   

13.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

14.
The optical properties of a Ho3+/Yb3+ co‐doped CaSc2O4 oxide material are investigated in detail. The spectral properties are described as a function of doping concentrations. The efficient Yb3+→Ho3+ energy transfer is observed. The transfer efficiency approaches 50 % before concentration quenching. The concentration‐optimized sample exhibits a strong green emission accompanied with a weak red emission, showing perfect green monochromaticity. The results of the spectral distribution, power dependence, and lifetime measurements are presented. The green, red, and near‐infrared (NIR) emissions around 545, 660, and 759 nm are assigned to the 5F4+5S25I8, 5F55I8, and 5F4+5S25I7 transitions of Ho3+, respectively. The detailed study reveals the upconversion luminescence mechanism involved in a novel Ho3+/Yb3+ co‐doped CaSc2O4 oxide material.  相似文献   

15.
Bi4Ti3O12 (BTO) doped with different concentrations of Er3+ was prepared using sol–gel method. Their structures and surface morphology were examined by X-ray diffraction, Raman spectroscopy and scanning electron microscopy, respectively. All XRD peaks can be indexed according to orthorhombic BTO phase, which is consistent with Raman measurement results. Strong upconversion green luminescence is observed in the Er3+ doped BTO powders pumped by 980 nm at room temperature. Three upconversion emission bands centered at about 525, 550 and 662 nm are due to the radiative relaxation of Er3+ from 2H11/2, 4S3/2 and 4F9/2 to the ground level 4I15/2, respectively. The upconversion emission mechanism of the samples were identified and analyzed. In addition, the doped BTO ceramics show obvious hysteresis loops, demonstrating the ferroelectric properties of the samples. These results illustrate the potential of this class of materials for photonic applications in optoelectronics devices.  相似文献   

16.
Thermal quenching of photoluminescence represents a significant obstacle to practical applications such as lighting, display, and photovoltaics. Herein, a novel strategy is established to enhance upconversion luminescence at elevated temperatures based on the use of negative thermal expansion host materials. Lanthanide‐doped orthorhombic Yb2W3O12 crystals are synthesized and characterized by in situ X‐ray diffraction and photoluminescence spectroscopy. The thermally induced contraction and distortion of the host lattice is demonstrated to enhance the collection of excitation energy by activator ions. When the temperature is increased from 303 to 573 K, a 29‐fold enhancement of green upconversion luminescence in Er3+ activators is achieved. Moreover, the temperature dependence of the upconversion luminescence is reversible. The thermally enhanced upconversion is developed as a sensitive ratiometric thermometer by referring to a thermally quenched upconversion.  相似文献   

17.
Vanadium(IV) dioxide has emerged as a promising thermochromic material for smart window application through metal–insulator transition, which simultaneously involves an abrupt change in optical, electrical, and magnetic properties. Here, Er3+ or Yb3+-codoped vanadium(IV) dioxide has been prepared by a hydrothermal and annealing process. The structure, metal–insulator transition, and upconversion luminescence characterizations have been evaluated using X-ray diffraction, differential thermal analysis, and fluorescence spectral analysis. The samples exhibit unique properties, including enhancing the intensity of upconversion emission, decreasing the metal–insulator transition temperature to 41.4°C, and emitting bright green upconversion emission along with extremely weak emission in the red region under 980?nm excitation. Moreover, green upconversion luminescence intensity increased by an order of magnitude from the low-temperature monoclinic structure of vanadium(IV) dioxide to the high-temperature rutile structure of vanadium(IV) dioxide for the first time, which will pave a new pathway for researching the application of photoluminescence in smart materials.  相似文献   

18.
The Ho3+/Yb3+ co-doped α-NaYF4 single crystal was grown successfully for the first time by a modified Bridgman method in which KF was used as assisting flux and a large temperature gradient (70-90 oC/cm) of solid-liquid interface was adopted. Upconversion emissions at green ~544 nm, red ~657 and ~751 nm were obtained under 980 nm laser diode excitation. The intensity at ~544 nm was much stronger than those of ~657 and ~751 nm. The mechanisms of the upconversion emissions were investigated by studying the relationship between the upconversion intensity and pump power. The optimized Yb3+ concentration was about 8.08 mol% when Ho3+ concentration was hold at about 1.0 mol%. The results showed that Ho3+/Yb3++ doped α-NaYF4 single crystal was a possible candidate upconversion material for the green solid-state laser.  相似文献   

19.
A new class of lanthanide-doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium-enriched core–shell NaErF4:Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+-Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700-fold enhancement) and near-infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red-emitting upconversion nanoprobes for biological applications.  相似文献   

20.
In this paper, we report a general approach to enhance the upconversion (UC) luminescence of Er3+ doped oxides phosphors by Yb3+–MoO4 2? dimer sensitizing, which induced strong green UC emissions under the 976 nm laser diode excitation. By codoping of Yb3+ and Mo6+ in the Er3+ doped TiO2 and ZnO, the green UC emissions intensity can be selectively increased about 10 and 500 times than those of Er3+–Yb3+ codoped TiO2 and ZnO, respectively. The high excited state energy transfer between |2F7/2, 3T2> state of Yb3+–MoO4 2? dimer and 4F7/2 level of Er3+ significantly avoids the nonradiative decay processes happened at lower energy levels of Er3+, and then increases the green UC emissions efficiently. The proposed Yb3+–MoO4 2? dimer sensitizing has been realized as an efficient way to enhance the green UC emissions in other Er3+ doped oxides phosphors. It is expected that the selective enhanced green UC emissions sensitized by Yb3+–MoO4 2? dimer in Er3+ doped oxides phosphors can greatly extend their scope of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号