首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rechargeable Li metal anode coupled with a high-voltage cathode is a promising approach to high-energy-density batteries exceeding 300 Wh kg−1. Reported here is an advanced dual-additive electrolyte containing a unique solvation structure and it comprises a tris(pentafluorophenyl)borane additive and LiNO3 in a carbonate-based electrolyte. This system generates a robust outer Li2O solid electrolyte interface and F- and B-containing conformal cathode electrolyte interphase. The resulting stable ion transport kinetics enables excellent cycling of Li/LiNi0.8Mn0.1Co0.1O2 for 140 cycles with 80 % capacity retention under highly challenging conditions (≈295.1 Wh kg−1 at cell-level). The electrolyte also exhibits high cycling stability for a 4.6 V LiCoO2 (160 cycles with 89.8 % capacity retention) cathode and 4.95 V LiNi0.5Mn1.5O4 cathode.  相似文献   

2.
Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long-cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra-thin Li anodes and high-S-loading cathodes deliver 146 cycles and a 338 Wh kg−1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long-cycling Li−S batteries.  相似文献   

3.
The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi-electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single-electron transfer, which are not ideal for multivalent-ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope-like voltage profiles with insertion/extraction redox of less than one electron. Taking VS4 as a model material, reversible two-electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g−1 at a current density of 100 mA g−1 in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg−1 for RMBs and >500 Wh kg−1 for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg2+ ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS4.  相似文献   

4.
Metal–organic framework cathodes usually exhibit low capacity and poor electrochemical performance for Li-ion storage owing to intrinsic low conductivity and inferior redox activity. Now a redox-active 2D copper–benzoquinoid (Cu-THQ) MOF has been synthesized by a simple solvothermal method. The abundant porosity and intrinsic redox character endow the 2D Cu-THQ MOF with promising electrochemical activity. Superior performance is achieved as a Li-ion battery cathode with a high reversible capacity (387 mA h g−1), large specific energy density (775 Wh kg−1), and good cycling stability. The reaction mechanism is unveiled by comprehensive spectroscopic techniques: a three-electron redox reaction per coordination unit and one-electron redox reaction per copper ion mechanism is demonstrated. This elucidatory understanding sheds new light on future rational design of high-performance MOF-based cathode materials for efficient energy storage and conversion.  相似文献   

5.
A rechargeable Li metal anode coupled with a high‐voltage cathode is a promising approach to high‐energy‐density batteries exceeding 300 Wh kg?1. Reported here is an advanced dual‐additive electrolyte containing a unique solvation structure and it comprises a tris(pentafluorophenyl)borane additive and LiNO3 in a carbonate‐based electrolyte. This system generates a robust outer Li2O solid electrolyte interface and F‐ and B‐containing conformal cathode electrolyte interphase. The resulting stable ion transport kinetics enables excellent cycling of Li/LiNi0.8Mn0.1Co0.1O2 for 140 cycles with 80 % capacity retention under highly challenging conditions (≈295.1 Wh kg?1 at cell‐level). The electrolyte also exhibits high cycling stability for a 4.6 V LiCoO2 (160 cycles with 89.8 % capacity retention) cathode and 4.95 V LiNi0.5Mn1.5O4 cathode.  相似文献   

6.
Lithium–sulfur (Li–S) batteries are highly regarded as the next-generation energy-storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg−1. Sulfurized polyacrylonitrile (SPAN) is considered a promising sulfur cathode to substitute carbon/sulfur (C/S) composites to afford higher Coulombic efficiency, improved cycling stability, and potential high-energy-density Li–SPAN batteries. However, the instability of the Li-metal anode threatens the performances of Li–SPAN batteries bringing limited lifespan and safety hazards. Li-metal can react with most kinds of electrolyte to generate a protective solid electrolyte interphase (SEI), electrolyte regulation is a widely accepted strategy to protect Li-metal anodes in rechargeable batteries. Herein, the basic principles and current challenges of Li–SPAN batteries are addressed. Recent advances on electrolyte regulation towards stable Li-metal anodes in Li–SPAN batteries are summarized to suggest design strategies of solvents, lithium salts, additives, and gel electrolyte. Finally, prospects for future electrolyte design and Li anode protection in Li–SPAN batteries are discussed.  相似文献   

7.
Conversion-type batteries apply the principle that more charge transfer is preferable. The underutilized electron transfer mode within two undermines the electrochemical performance of halogen batteries. Here, we realised a three-electron transfer lithium-halogen battery based on I/I+ and Cl/Cl0 couples by using a common commercial electrolyte saturated with Cl anions. The resulting Li||tetrabutylammonium triiodide (TBAI3) cell exhibits three distinct discharging plateaus at 2.97, 3.40, and 3.85 V. Moreover, it has a high capacity of 631 mAh g−1I (265 mAh g−1electrode, based on entire mass loading) and record-high energy density of up to 2013 Wh kg−1I (845 Wh kg−1electrode). To support these findings, experimental characterisations and density functional theory calculations were conducted to elucidate the redox chemistry involved in this novel interhalogen strategy. We believe our paradigm presented here has a foreseeable inspiring effect on other halogen batteries for high-energy-density pursuit.  相似文献   

8.
A new super‐concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra‐high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li‐ion cell based on LiMn2O4 and carbon‐coated TiO2 delivered the unprecedented energy density of 100 Wh kg?1 for rechargeable aqueous Li‐ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the “water‐in‐salt” electrolyte further pushed the energy densities of aqueous Li‐ion cells closer to those of the state‐of‐the‐art Li‐ion batteries.  相似文献   

9.
Lithium ion batteries (LIBs) at present still suffer from low rate capability and poor cycle life during fast ion insertion/extraction processes. Searching for high-capacity and stable anode materials is still an ongoing challenge. Herein, a facile strategy for the synthesis of ultrathin GeS2 nanosheets with the thickness of 1.1 nm is reported. When used as anodes for LIBs, the two-dimensional (2D) structure can effectively increase the electrode/electrolyte interface area, facilitate the ion transport, and buffer the volume expansion. Benefiting from these merits, the as-synthesized GeS2 nanosheets deliver high specific capacity (1335 mAh g−1 at 0.15 A g−1), extraordinary rate performance (337 mAh g−1 at 15 A g−1) and stable cycling performance (974 mAh g−1 after 200 cycles at 0.5 A g−1). Importantly, our fabricated Li-ion full cells manifest an impressive specific capacity of 577 mAh g−1 after 50 cycles at 0.1 A g−1 and a high energy density of 361 Wh kg−1 at a power density of 346 W kg−1. Furthermore, the electrochemical reaction mechanism is investigated by the means of ex-situ high-resolution transmission electron microscopy. These results suggest that GeS2 can use to be an alternative anode material and encourage more efforts to develop other high-performance LIBs anodes.  相似文献   

10.
Dual-ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg−1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof-of-concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg−1, which is among the best performances of DIBs reported to date.  相似文献   

11.
The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi‐electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single‐electron transfer, which are not ideal for multivalent‐ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope‐like voltage profiles with insertion/extraction redox of less than one electron. Taking VS4 as a model material, reversible two‐electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g?1 at a current density of 100 mA g?1 in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg?1 for RMBs and >500 Wh kg?1 for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg2+ ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS4.  相似文献   

12.
Lithium–sulfur (Li–S) batteries are regarded as promising high-energy-density energy storage devices. However, the cycling stability of Li–S batteries is restricted by the parasitic reactions between Li metal anodes and soluble lithium polysulfides (LiPSs). Encapsulating LiPS electrolyte (EPSE) can efficiently suppress the parasitic reactions but inevitably sacrifices the cathode sulfur redox kinetics. To address the above dilemma, a redox comediation strategy for EPSE is proposed to realize high-energy-density and long-cycling Li–S batteries. Concretely, dimethyl diselenide (DMDSe) is employed as an efficient redox comediator to facilitate the sulfur redox kinetics in Li–S batteries with EPSE. DMDSe enhances the liquid–liquid and liquid–solid conversion kinetics of LiPS in EPSE while maintains the ability to alleviate the anode parasitic reactions from LiPSs. Consequently, a Li–S pouch cell with a high energy density of 359 Wh kg−1 at cell level and stable 37 cycles is realized. This work provides an effective redox comediation strategy for EPSE to simultaneously achieve high energy density and long cycling stability in Li–S batteries and inspires rational integration of multi-strategies for practical working batteries.  相似文献   

13.
Herein, we have developed a sodium ion based aqueous energy storage device with nickel prussian-blue-analogue (Ni-PBA) positive and functionalized carbon-black negative electrodes in 1 M Na2SO4 electrolyte solution. The components required to develop the device, i. e., stainless steel (SS) current-collectors, absorbent-glass-mat separator, electrolyte, carbon-black, and precursors of Ni-PBA, are all environmentally benign and inexpensive. To minimize the corrosion of pristine-SS, polyaniline coating on the SS surface is applied by in situ electrodeposition method. The full cell exhibits a specific capacity of 28 mAh g−1 with 90 % Coulomb efficiency (@0.2C), an energy density of 34 Wh kg−1 (@20 W kg−1), a power density of 100 W kg−1 (@18 Wh kg−1) and a good life cycle (70 % capacity-retention over 500 cycles @1.0C rate) within the 0–1.2 V window. The cell performance is further tested under variable temperatures, and 0–50 °C range is reported to be the working window for this cell.  相似文献   

14.
The novel functionalized porphyrin [5,15‐bis(ethynyl)‐10,20‐diphenylporphinato]copper(II) (CuDEPP) was used as electrodes for rechargeable energy‐storage systems with an extraordinary combination of storage capacity, rate capability, and cycling stability. The ability of CuDEPP to serve as an electron donor or acceptor supports various energy‐storage applications. Combined with a lithium negative electrode, the CuDEPP electrode exhibited a long cycle life of several thousand cycles and fast charge–discharge rates up to 53 C and a specific energy density of 345 Wh kg−1 at a specific power density of 29 kW kg−1. Coupled with a graphite cathode, the CuDEPP anode delivered a specific power density of 14 kW kg−1. Whereas the capacity is in the range of that of ordinary lithium‐ion batteries, the CuDEPP electrode has a power density in the range of that of supercapacitors, thus opening a pathway toward new organic electrodes with excellent rate capability and cyclic stability.  相似文献   

15.
Sluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure-integrated modulation concept was presented, to unlock the omnidirectional storage kinetics-enhanced porous VSe2−xn H2O host. Theory research indicated that the co-modulation of H2O intercalation and selenium vacancy enables enhancing the interfacial zinc ion capture ability and decreasing the zinc ion diffusion barrier. Moreover, an interfacial adsorption-intercalation pseudocapacitive storage mechanism was uncovered. Such cathode displayed remarkable storage performance at the wide temperature range (−40–60 °C) in aqueous and solid electrolytes. In particular, it can retain a high specific capacity of 173 mAh g−1 after 5000 cycles at 10 A g−1, as well as a high energy density of 290 Wh kg−1 and a power density of 15.8 kW kg−1 at room temperature. Unexpectedly, a remarkably energy density of 465 Wh kg−1 and power density of 21.26 kW kg−1 at 60 °C also can be achieved, as well as 258 Wh kg−1 and 10.8 kW kg−1 at −20 °C. This work realizes a conceptual breakthrough for extending the interfacial storage limit of layered TMDs to construct all-climate high-performance Zn-ion batteries.  相似文献   

16.
Lithium–sulfur (Li–S) batteries are highly regarded as the next‐generation energy‐storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg?1. Sulfurized polyacrylonitrile (SPAN) is considered a promising sulfur cathode to substitute carbon/sulfur (C/S) composites to afford higher Coulombic efficiency, improved cycling stability, and potential high‐energy‐density Li–SPAN batteries. However, the instability of the Li‐metal anode threatens the performances of Li–SPAN batteries bringing limited lifespan and safety hazards. Li‐metal can react with most kinds of electrolyte to generate a protective solid electrolyte interphase (SEI), electrolyte regulation is a widely accepted strategy to protect Li‐metal anodes in rechargeable batteries. Herein, the basic principles and current challenges of Li–SPAN batteries are addressed. Recent advances on electrolyte regulation towards stable Li‐metal anodes in Li–SPAN batteries are summarized to suggest design strategies of solvents, lithium salts, additives, and gel electrolyte. Finally, prospects for future electrolyte design and Li anode protection in Li–SPAN batteries are discussed.  相似文献   

17.
Hydronium-ion batteries have received significant attention owing to the merits of extraordinary sustainability and excellent rate abilities. However, achieving high-performance hydronium-ion batteries remains a challenge due to the inferior properties of anode materials in strong acid electrolyte. Herein, a hydronium-ion battery is constructed which is based on a diquinoxalino [2,3-a:2’,3’-c] phenazine (HATN) anode and a MnO2@graphite felt cathode in a hybrid acidic electrolyte. The fast kinetics of hydronium-ion insertion/extraction into HATN electrode endows the HATN//MnO2@GF battery with enhanced electrochemical performance. This battery exhibits an excellent rate performance (266 mAh g−1 at 0.5 A g−1, 97 mAh g−1 at 50 A g−1), attractive energy density (182.1 Wh kg−1) and power density (31.2 kW kg−1), along with long-term cycle stability. These results shed light on the development of advanced hydronium-ion batteries.  相似文献   

18.
High-energy-density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co-solvents with sustained-release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high-loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm−2), and lean electrolytes (6.1 g Ah−1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg−1 for 60 cycles with lean electrolytes (2.3 g Ah−1).  相似文献   

19.
Anode-free lithium (Li) metal batteries are desirable candidates in pursuit of high-energy-density batteries. However, their poor cycling performances originated from the unsatisfactory reversibility of Li plating/stripping remains a grand challenge. Here we show a facile and scalable approach to produce high-performing anode-free Li metal batteries using a bioinspired and ultrathin (250 nm) interphase layer comprised of triethylamine germanate. The derived tertiary amine and LixGe alloy showed enhanced adsorption energy that significantly promoted Li-ion adsorption, nucleation and deposition, contributing to a reversible expansion/shrinkage process upon Li plating/stripping. Impressive Li plating/stripping Coulombic efficiencies (CEs) of ≈99.3 % were achieved for 250 cycles in Li/Cu cells. In addition, the anode-free LiFePO4 full batteries demonstrated maximal energy and power densities of 527 Wh kg−1 and 1554 W kg−1, respectively, and remarkable cycling stability (over 250 cycles with an average CE of 99.4 %) at a practical areal capacity of ≈3 mAh cm−2, the highest among state-of-the-art anode-free LiFePO4 batteries. Our ultrathin and respirable interphase layer presents a promising way to fully unlock large-scale production of anode-free batteries.  相似文献   

20.
Practical lithium–sulfur (Li−S) batteries are severely plagued by the instability of solid electrolyte interphase (SEI) formed in routine ether electrolytes. Herein, an electrolyte with 1,3,5-trioxane (TO) and 1,2-dimethoxyethane (DME) as co-solvents is proposed to construct a high-mechanical-stability SEI by enriching organic components in Li−S batteries. The high-mechanical-stability SEI works compatibly in Li−S batteries. TO with high polymerization capability can preferentially decompose and form organic-rich SEI, strengthening mechanical stability of SEI, which mitigates crack and regeneration of SEI and reduces the consumption rate of active Li, Li polysulfides, and electrolytes. Meanwhile, DME ensures high specific capacity of S cathodes. Accordingly, the lifespan of Li−S batteries increases from 75 cycles in routine ether electrolyte to 216 cycles in TO-based electrolyte. Furthermore, a 417 Wh kg−1 Li−S pouch cell undergoes 20 cycles. This work provides an emerging electrolyte design for practical Li−S batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号