首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydride AuI bonds are labile due to the mismatch in electric potential of an oxidizing metal and reducing ligand, and therefore the structure and structure–activity relationships of nanoclusters that contain them are seldom studied. Herein, we report the synthesis and characterization of [Au7(PPh3)7H5](SbF6)2 (abbrev. Au7H5 2+ ), an Au cluster complex containing five hydride ligands, which decomposed to give [Au8(PPh3)7]2+ (abbrev. Au8 2+ ) upon exposure to light (300 to 450 nm). The valence state of AuI and H was verified by density functional theory (DFT) calculations, NMR, UV/Vis and XPS. The two nanoclusters behaved differently in the electrocatalytic CO2 reduction reaction (CO2RR): Au7H5 2+ exhibited 98.2 % selectivity for H2, whereas Au8 2+ was selective for CO (73.5 %). Further DFT calculations showed that the H ligand inhibited the CO2RR process compared with the electron-donor H.  相似文献   

2.
Superatomic clusters offer useful templates displaying distinctive physical and chemical characteristics. Here, we explore the [M@Au8(PPh3)8]n+ (M = Au, n = 3; Pd, Pt, n = 2) robust framework to gain an understanding of the nature of the inclusion of mercury atoms at Au4 faces, leading to [M@Au8Hgx(PPh3)8]n+ (x = 1, 2). Our results show a weak interaction of about 25 kcal mol−1 per Hg atom, which is mainly of electrostatic character, followed by orbital and London dispersion-type interactions. This weak interaction can be understood as the formation of host-guest species, for which the inherent electronic and optical properties of the [M@Au8(PPh3)8] cluster along the series do not vary to a large extent. This demonstrates that, in [M@Au8Hgx(PPh3)8], each Hg can be considered an inclusion atom rather than a dopant element, where the parent cluster is able to act as a Lewis acid host. Furthermore, the viable formation of such species can serve as useful examples to stimulate future experimental characterization of inclusion complexes involving related superatomic structures with available open faces.  相似文献   

3.
The Zintl anion (Ge2As2)2− represents an isostructural and isoelectronic binary counterpart of yellow arsenic, yet without being studied with the same intensity so far. Upon introducing [(PPh3)AuMe] into the 1,2-diaminoethane (en) solution of (Ge2As2)2−, the heterometallic cluster anion [Au6(Ge3As)(Ge2As2)3]3− is obtained as its salt [K(crypt-222)]3[Au6(Ge3As)(Ge2As2)3]⋅en⋅2 tol ( 1 ). The anion represents a rare example of a superpolyhedral Zintl cluster, and it comprises the largest number of Au atoms relative to main group (semi)metal atoms in such clusters. The overall supertetrahedral structure is based on a (non-bonding) octahedron of six Au atoms that is face-capped by four (GexAs4−x)x (x=2, 3) units. The Au atoms bind to four main group atoms in a rectangular manner, and this way hold the four units together to form this unprecedented architecture. The presence of one (Ge3As)3− unit besides three (Ge2As2)2− units as a consequence of an exchange reaction in solution was verified by detailed quantum chemical (DFT) calculations, which ruled out all other compositions besides [Au6(Ge3As)(Ge2As2)3]3−. Reactions of the heavier homologues (Tt2Pn2)2− (Tt=Sn, Pb; Pn=Sb, Bi) did not yield clusters corresponding to that in 1 , but dimers of ternary nine-vertex clusters, {[AuTt5Pn3]2}4− (in 2 – 4 ; Tt/Pn=Sn/Sb, Sn/Bi, Pb/Sb), since the underlying pseudo-tetrahedral units comprising heavier atoms do not tend to undergo the said exchange reactions as readily as (Ge2As2)2−, according to the DFT calculations.  相似文献   

4.
An SR-modified Au cluster with a sub-nanometer size, Au11(S-4-NC5H4)3(PPh3)7 (1), has been synthesized by NaBH4 reduction of Au(S-py)(PPh3) or by reacting [Au9(PPh3)8](NO3)3 with HS-4-py in good yield. Its molecular structure has been elucidated by single crystal X-ray diffraction, and TEM observation has been achieved for the first time for this size of SR-modified Au clusters. The core structure is best described in terms of an incomplete icosahedron. CV measurements in CH2Cl2 have suggested that the cluster does not coagulate in solution with significant concentration.  相似文献   

5.
The reaction between AuMe(PPh3) and Ru3(μ-H)33-CBr)(CO)9 (1) affords the novel heptanuclear cluster Au4Ru33-CMe)(Br)(CO)9(PPh3)3 (2), containing an Au/Ru3/Au trigonal pyramidal cluster face-capped by two Au(PPh3) groups and a CMe ligand, together with Au2Ru3(μ-H)(μ3-CMe)(CO)9(PPh3)2 (3), formed by isolobal replacement of two of the three μ-H atoms in 1 by Au(PPh3) groups. The latter co-crystallises with the analogous μ3-CH complex, as also shown spectroscopically.  相似文献   

6.
Fast atom bombardment (FAB) mass spectrometry has been used to obtain spectra of HRu3Au(μ3-S)(CO)9(PPh3), Ru3Au23-S)(CO)9(PPh3)2 and Ru3Au33-C12H15)(CO)8(PPh3)3, none of which give metal-containing ions in conventional EI mass spectrometry. All the compounds give molecular (M+) or quasimolecular ([M + 2H]+) ions which fragment by conventional routes.  相似文献   

7.
We report on the synthesis, stability, and photoluminescence (PL) properties of triphenylphosphine (PPh3)-stabilized PdAu10(PPh3)8Cl2 cluster, which is a mono-Pd-doped cluster of the well-studied Au11(PPh3)8Cl2 cluster. The PdAu10(PPh3)8Cl2 cluster was synthesized by simultaneously reducing two different metal complexes; AuCl(PPh3) and Pd(PPh3)4. Experimental evaluation of the stability showed that PdAu10(PPh3)8Cl2 is more stable against degradation in solution than the monometal Au11(PPh3)8Cl2 cluster. PL measurements revealed that PdAu10(PPh3)8Cl2 exhibits PL at 950?nm with a quantum yield of 1.5?×?10?3, which has not been observed for the monometal Au11(PPh3)8Cl2 cluster. The results indicate that Pd doping is a powerful method to produce clusters with higher stability and different physical properties than the monometal Au:PPh3 clusters.  相似文献   

8.
The cation of the title compound, [Au4(PPh2CH2PPhCH2PPh2)2Cl2][Au(C6F5)3Cl]2 or [Au4Cl2(C32H29P3)2][AuCl(C6F5)3]2, displays a rhomboidal geometry for the Au atoms, with short Au?Au distances of 3.104 (2) and 3.185 (1) Å; the linear coordination at the AuI atoms is distorted: P—Au—P 164.7 (2)° and P—Au—Cl 170.67 (11)°. The anion shows the expected square‐planar geometry at AuIII, with the Au atom 0.022 (5) Å out of the plane of the four donor atoms.  相似文献   

9.
197Au Mössbauer effect spectroscopy and specific heat measurements have been performed as a function of temperature on three gold polynuclear cluster compounds, [Au9(PPh3)8](NO3)3, Au11(PPh3)7(SCN)3, and Au55(PPh3)12Cl6. The Mössbauer data yield information on the vibrational motions of the various distinguishable Au sites, as well as on the motion of the clusters as a whole. The Mössbauer and the specific heat data are successfully described by a superposition of inter- and intra-cluster vibrations. The latter are determined by calculating numerically the normal modes of vibration of the metal cores.  相似文献   

10.
The title compound, tetra­carbonyl‐1κ4C‐tris­(tri­phenyl­phos­phino)‐1κP,2κP,3κPtriangulo‐chromiumdigold(AuAu)(2 CrAu) tetra­hydro­furan solvate, [Au2Cr(C18H15P)3(CO)4]·C4H8O, is a stable isolobal analogue of the extremely labile [(η2‐H2)CrLn–1] molecular hydrogen complex (n = 6; L is a neutral ligand, e.g. CO or PPh3), and features the shortest known separation [2.6937 (2) Å] between two Au atoms in a triangular heteronuclear metal‐cluster framework.  相似文献   

11.
Au2+ is a simple but crucial model system for understanding the diverse catalytic activity of gold. While the Au2+ ground state (X2Σg+) is understood reasonably well from mass spectrometry and computations, no spectroscopic information is available for its first excited state (A2Σu+). Herein, we present the vibrationally resolved electronic spectrum of this state for cold Ar-tagged Au2+ cations. This exceptionally low-lying and well isolated A2Σ(u)+←X2Σ(g)+ transition occurs in the near-infrared range. The observed band origin (5738 cm−1, 1742.9 nm, 0.711 eV) and harmonic Au−Au and Au−Ar stretch frequencies (201 and 133 cm−1) agree surprisingly well with those predicted by standard time-dependent density functional theory calculations. The linearly bonded Ar tag has little impact on either the geometric or electronic structure of Au2+, because the Au2+⋅⋅⋅Ar bond (∼0.4 eV) is much weaker than the Au−Au bond (∼2 eV). As a result of 6 s←5d excitation of an electron from the antibonding σu* orbital (HOMO-1) into the bonding σg orbital (SOMO), the Au−Au bond contracts substantially (by 0.1 Å).  相似文献   

12.
Kinetic and thermodynamic investigations were performed for a mixed aqueous-organic, 1:1 (v/v) water–1,4-dioxane medium, which was found to be an efficient solvent for the interaction of a neutral dichlorotris(triphenylphosphine) ruthenium(II), RuCl2(PPh3)3 complex with carbon monoxide at atmospheric pressure. During the interaction, RuCl2(PPh3)3 dissociates to a neutral complex dichlorobis(triphenylphosphine) ruthenium(II), RuCl2(PPh3)2, by losing a coordinated PPh3 ligand and RuCl2(PPh3)2 coordinates with CO to form an in situ carbonyl complex RuCl2(CO)(PPh3)2. The in situ formed carbonyl complex RuCl2(CO)(PPh3)2 was thoroughly characterized by equilibrium, spectrophotometric, IR, and electrochemical techniques. Under equilibrium conditions, the rate and dissociation constants for the dissociation of PPh3 from RuCl2(PPh3)3 were found to be favorable for the formation of the carbonyl complex RuCl2(CO)(PPh3)2. The rates of complexation for the formation of RuCl2(CO)(PPh3)2 were found to follow an overall second-order kinetics being first order in terms of the concentrations of both carbon monoxide and RuCl2(PPh3)2. The determined activation parameters corresponding to the rate constant (ΔH# = 35.9 ± 2.5 kJ mol−1 and ΔS# = −122 ± 6 J K−1 mol−1) and thermodynamic parameters corresponding to the formation constant (ΔH° = −33.5 ± 4.5 kJ mol−1, ΔS° = −25 ± 8 J K−1 mol−1, and ΔG° = −25.7 ± 2.0 kJ mol−1) were found to be highly favorable for the formation of the complex RuCl2(CO)(PPh3)2. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 359–369, 2008  相似文献   

13.
A novel Ag doped Au44(C10H9)28 nanocluster (C10H10=1-ethynyl-2,4-dimethylbenzene) was synthesized, that is, Ag4+xAu40-x(C10H9)28 (x≤6), where four Ag positions located in the surface staple of the cluster have been determined, while six Au/Ag co-occupying positions have been found in the metal core of the cluster. The electronic configuration of Au44(C10H9)28 cluster is significantly disturbed by doping Ag atoms, hence promoting the electron transport capability. For the two-electron conversion reaction of CO2 to CO in electrochemical reduction of CO2, Ag doped Ag4+xAu40-x(C10H9)28 catalyst exhibited higher effective activity and long-term stability than its counterpart Au44(C10H9)28 catalyst.  相似文献   

14.
C−H dissociation and C−C coupling are two key steps in converting CH4 into multi-carbon compounds. Here we report a synergy of Au and Ag to greatly promote C2H6 formation over Au1Ag single-atom alloy nanoparticles (Au1Ag NPs)-modified ZnO catalyst via photocatalytic oxidative coupling of methane (POCM) with O2 and H2O. Atomically dispersed Au in Au1Ag NPs effectively promotes the dissociation of O2 and H2O into *OOH, promoting C−H activation of CH4 on the photogenerated O to form *CH3. Electron-deficient Au single atoms, as hopping ladders, also facilitate the migration of electron donor *CH3 from ZnO to Au1Ag NPs. Finally, *CH3 coupling can readily occur on Ag atoms of Au1Ag NPs. An excellent C2H6 yield of 14.0 mmol g−1 h−1 with a selectivity of 79 % and an apparent quantum yield of 14.6 % at 350 nm is obtained via POCM with O2 and H2O, which is at least two times that of the photocatalytic system. The bimetallic synergistic strategy offers guidance for future catalyst design for POCM with O2 and H2O.  相似文献   

15.
H2Ru33-S)(CO)9 is deprotonated by K[HBBus3] to give cluster anions which react with [O{Au(PPh3)}3]+ or with AuCl(PPh3)/T1+ to give HRu3Au(μ3-S)(CO)9(PPh3) (1) and Ru3Au23-S)(CO)9(PPh3)2 (3). A similar sequence with HRu33-SBut)(CO)9 leads to Ru3Au(μ3-SBut)(CO)9(PPh3) (2) as the main product although some 1 also forms, indicating SC cleavage competes with deprotonation of HRu33-SBut)(CO)9 by [HBBus3]?. The X-ray crystal structures of 1, 2 and 3 are described; (1) and (2) have “butterfly” AuRu3 cores with markedly different hinge angles of 119 and 148° respectively, while 3 has a trigonal-bipyramidal Au2Ru3 skeleton. All three clusters have the sulphur atom symmetrically bridging the Ru3 triangular face.  相似文献   

16.
Reactions between [H3Ru4(CO)12]? and [{Au(PPh3)}3O]+ afford H3Ru4-Au(CO)12(PPh3), H2Ru4Au2(CO)12(PPh3)2 and HRu4Au3(CO)12(PPh3)3. The X-ray structure of the latter shows that it has the unusual bicapped trigonal bipyramidal metal core, in which two Ru2Au faces of the Ru4Au fragment are capped by the other two Au atoms. The central Au atom is asymmetrically attached to the Ru3 face as a result of the interaction of a phenyl ring of the PPh3 ligand with two of the CO groups. Metal-metal separations are: two Au-Au, 2.837(1) Å; Ru-Ru, six between 2.805–3.004(3) Å; Au-Ru, seven between 2.821–3.007(2) Å. HRu4Au3(CO)12(PPh3)3 is monoclinic, space group P21/n, with a 18.754(3), b 18.459(5), c 22.317(4) Å, β 113.06(2)°; 2852 data [I > 2.5σ(I)] were refined to R, Rw 0.038, 0.038.  相似文献   

17.
The stimulus-response of metal nanoclusters is crucial to their applications in catalysis and bio-clinics, etc. However, its mechanistic origin has not been well studied. Herein, the mechanism of the AuIPPh3Cl-induced size-conversion from [Au6(DPPP)4]2+ to [Au8(DPPP)4Cl2]2+ (DPPP is short for 1,3-bis(diphenylphosphino)propane) is theoretically investigated with density functional theory (DFT) calculations. The optimal size-growth pathway, and the key structural parameters were elucidated. The Au−P bond dissociation steps are key to the size-growth, the easiness of which was determined by the charge density of the metallic core of the cluster precursors (i.e., “core charge density”). This study sheds light on the inherent structure–reactivity relationships during the size-conversion, and will benefit the deep understanding on the kinetics of more complex systems.  相似文献   

18.
Reactions of gold anions and cations generated by laser desorption/ionization were studied in the FTICR spectrometer. Au associated with C6F6 to give the novel Au(C6F6) complex, whose binding energy was estimated to be 24 ± 4 kcal mol−1 from analysis of the radiative association (RA) kinetics. Au+ associated with C6F5H to give Au+(C6F5H), with binding energy estimated to be 31 kcal mol−1. Au+ reacted with C6H6 to form the well known Au+(C6H6) and Au+(C6H6)2 complexes. The observation of rapid charge transfer from Au+(C6H6) to C6H6 was interpreted as showing that benzene binds more strongly to neutral Au than to Au+. The neutral Au–C6H6 bond is accordingly concluded to be stronger than about 70 kcal mol−1.  相似文献   

19.
20.
The X-ray structural study of the reaction product of equimolar amounts of [Au3Cu2(C2Ph)6]. [{Au(C2Ph)} n ], and [Ag(C2Ph)} n ] revealed two bimetallic anionic [N(PPh3)2] + [Au3Ag2(C2Ph)6] and [N(PPh3)2]+[Au3Cu2 (C2 Pg)6] — clusters co-crystallized in one asymmetric unit. Each cluster has trigonal bipyramidal geometry with three gold atoms occupying equatorial planes and two silver or copper atoms in the apical positions. Our earlier conclusion based upon spectroscopic characterization describing the product of be above reaction as trimetallic cluster containing three coinage-metals with an overall composition [Au3CuAg(C2Ph)6], was erroneous.Presented at the 210th ACS Meeting, August 19–24, 1995, Chicago, Illinois.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号