首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Efficient C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles have been developed. The former route enables C4-arylation in a highly efficient and mild manner and the latter route provides an alternative straightforward protocol for synthesis of C2/C4 disubstituted indoles. The mechanism studies imply that the different reaction pathways were tuned by the distinct acid additives, which led to either the Pd(i)–Pd(ii) pathway or Pd(ii) catalysis.

C4-arylation via Pd(i)–Pd(ii) catalysis and domino C4-arylation/3,2-carbonyl migration of indoles via Pd(ii) catalysis tuning by acids have been developed.  相似文献   

2.
Electrochemical measurements on tris(cyclopentadienyl)thorium and uranium compounds in the +2, +3, and +4 oxidation states are reported with C5H3(SiMe3)2, C5H4SiMe3, and C5Me4H ligands. The reduction potentials for both U and Th complexes trend with the electron donating abilities of the cyclopentadienyl ligand. Thorium complexes have more negative An(iii)/An(ii) reduction potentials than the uranium analogs. Electrochemical measurements of isolated Th(ii) complexes indicated that the Th(iii)/Th(ii) couple was surprisingly similar to the Th(iv)/Th(iii) couple in Cp′′-ligated complexes. This suggested that Th(ii) complexes could be prepared from Th(iv) precursors and this was demonstrated synthetically by isolation of directly from UV-visible spectroelectrochemical measurements and reactions of with elemental barium indicated that the thorium system undergoes sequential one electron transformations.

Electrochemical determination of the reduction potentials for a variety of tris(cyclopentadienyl)uranium and thorium complexes, including data on U(ii) and Th(ii) complexes.  相似文献   

3.
Although Pd(OAc)2-catalysed alkoxylation of the C(sp3)–H bonds mediated by hypervalent iodine(iii) reagents (ArIX2) has been developed by several prominent researchers, there is no clear mechanism yet for such crucial transformations. In this study, we shed light on this important issue with the aid of the density functional theory (DFT) calculations for alkoxylation of butyramide derivatives. We found that the previously proposed mechanism in the literature is not consistent with the experimental observations and thus cannot be operating. The calculations allowed us to discover an unprecedented mechanism composed of four main steps as follows: (i) activation of the C(sp3)–H bond, (ii) oxidative addition, (iii) reductive elimination and (iv) regeneration of the active catalyst. After completion of step (i) via the CMD mechanism, the oxidative addition commences with an X ligand transfer from the iodine(iii) reagent (ArIX2) to Pd(ii) to form a square pyramidal complex in which an iodonium occupies the apical position. Interestingly, a simple isomerization of the resultant five-coordinate complex triggers the Pd(ii) oxidation. Accordingly, the movement of the ligand trans to the Pd–C(sp3) bond to the apical position promotes the electron transfer from Pd(ii) to iodine(iii), resulting in the reduction of iodine(iii) concomitant with the ejection of the second X ligand as a free anion. The ensuing Pd(iv) complex then undergoes the C–O reductive elimination by nucleophilic attack of the solvent (alcohol) on the sp3 carbon via an outer-sphere SN2 mechanism assisted by the X anion. Noteworthy, starting from the five coordinate complex, the oxidative addition and reductive elimination processes occur with a very low activation barrier (ΔG 0–6 kcal mol−1). The strong coordination of the alkoxylated product to the Pd(ii) centre causes the regeneration of the active catalyst, i.e. step (iv), to be considerably endergonic, leading to subsequent catalytic cycles to proceed with a much higher activation barrier than the first cycle. We also found that although, in most cases, the alkoxylation reactions proceed via a Pd(ii)–Pd(iv)–Pd(ii) catalytic cycle, the other alternative in which the oxidation state of the Pd(ii) centre remains unchanged during the catalysis could be operative, depending on the nature of the organic substrate.

This work uses DFT calculations to explore Pd(ii)-catalysed iodine(iii)-mediated alkoxylation of unactivated C(sp3)–H bonds and reveals how important the isomerization is in triggering the oxidative addition of ArIX2 to Pd(ii).  相似文献   

4.
We introduce the formation and characterization of heterometallic single-chain nanoparticles entailing both catalytic and luminescent properties. A terpolymer containing two divergent ligand moieties, phosphines and phosphine oxides, is synthesized and intramolecularly folded into nanoparticles via a selective metal complexation of Pt(ii) and Eu(iii). The formation of heterometallic Eu(iii)/Pt(ii) nanoparticles is evidenced by size exclusion chromatography, multinuclear NMR (1H, 31P{1H}, 19F, 195Pt) as well as diffusion-ordered NMR and IR spectroscopy. Critically, we demonstrate the activity of the SCNPs as a homogeneous and luminescent catalytic system in the amination reaction of allyl alcohol.

A bifunctional terpolymer containing two orthogonal ligand moieties was synthesized, giving way to the facile formation of heterometallic Eu(iii)/Pt(ii) single-chain nanoparticles, which display both catalytic and luminescent properties.  相似文献   

5.
A highly selective ruthenium-catalyzed C–H activation/annulation of alkyne-tethered N-alkoxybenzamides has been developed. In this reaction, diverse products from inverse annulation can be obtained in moderate to good yields with high functional group compatibility. Insightful experimental and theoretical studies indicate that the reaction to the inverse annulation follows the Ru(ii)–Ru(iv)–Ru(ii) pathway involving N–O bond cleavage prior to alkyne insertion. This is highly different compared to the conventional mechanism of transition metal-catalyzed C–H activation/annulation with alkynes, involving alkyne insertion prior to N–O bond cleavage. Via this pathway, the in situ generated acetic acid from the N–H/C–H activation step facilitates the N–O bond cleavage to give the Ru-nitrene species. Besides the conventional mechanism forming the products via standard annulation, an alternative and novel Ru(ii)–Ru(iv)–Ru(ii) mechanism featuring N–O cleavage preceding alkyne insertion has been proposed, affording a new understanding of transition metal-catalyzed C–H activation/annulation.

A highly selective ruthenium-catalyzed C–H activation/annulation through a pathway involving N–O bond cleavage prior to alkyne insertion is developed.  相似文献   

6.
The redox chemistry of uranium is dominated by single electron transfer reactions while single metal four-electron transfers remain unknown in f-element chemistry. Here we show that the oxo bridged diuranium(iii) complex [K(2.2.2-cryptand)]2[{((Me3Si)2N)3U}2(μ-O)], 1, effects the two-electron reduction of diphenylacetylene and the four-electron reduction of azobenzene through a masked U(ii) intermediate affording a stable metallacyclopropene complex of uranium(iv), [K(2.2.2-cryptand)][U(η2-C2Ph2){N(SiMe3)2}3], 3, and a bis(imido)uranium(vi) complex [K(2.2.2-cryptand)][U(NPh)2{N(SiMe3)2}3], 4, respectively. The same reactivity is observed for the previously reported U(ii) complex [K(2.2.2-cryptand)][U{N(SiMe3)2}3], 2. Computational studies indicate that the four-electron reduction of azobenzene occurs at a single U(ii) centre via two consecutive two-electron transfers and involves the formation of a U(iv) hydrazide intermediate. The isolation of the cis-hydrazide intermediate [K(2.2.2-cryptand)][U(N2Ph2){N(SiMe3)2}3], 5, corroborated the mechanism proposed for the formation of the U(vi) bis(imido) complex. The reduction of azobenzene by U(ii) provided the first example of a “clear-cut” single metal four-electron transfer in f-element chemistry.

Both a masked and the actual complex [U(ii){N(SiMe3)2}3]+ effect the reduction of azobenzene to yield a U(vi) bis-imido species providing the first example of a “clear-cut” metal centred four-electron reduction in f-element chemistry.  相似文献   

7.
In this work, we describe the synthesis, structural and photophysical characterization of four novel Pd(ii) and Pt(ii) complexes bearing tetradentate luminophoric ligands with high photoluminescence quantum yields (ΦL) and long excited state lifetimes (τ) at room temperature, where the results were interpreted by means of DFT calculations. Incorporation of fluorine atoms into the tetradentate ligand favors aggregation and thereby, a shortened average distance between the metal centers, which provides accessibility to metal–metal-to-ligand charge-transfer (3MMLCT) excimers acting as red-shifted energy traps if compared with the monomeric entities. This supramolecular approach provides an elegant way to enable room-temperature phosphorescence from Pd(ii) complexes, which are otherwise quenched by a thermal population of dissociative states due to a lower ligand field splitting. Encapsulation of these complexes in 100 nm-sized aminated polystyrene nanoparticles enables concentration-controlled aggregation-enhanced dual emission. This phenomenon facilitates the tunability of the absorption and emission colors while providing a rigidified environment supporting an enhanced ΦL up to about 80% and extended τ exceeding 100 μs. Additionally, these nanoarrays constitute rare examples for self-referenced oxygen reporters, since the phosphorescence of the aggregates is insensitive to external influences, whereas the monomeric species drop in luminescence lifetime and intensity with increasing triplet molecular dioxygen concentrations (diffusion-controlled quenching).

Pt(ii) and Pd(ii) complexes with unprecedented photophysical properties were developed. Encapsulation in nanoparticles boosted their performance while rendering them as self-referenced oxygen sensors.  相似文献   

8.
Hydride complexes resulting from the oxidative addition of C–H bonds are intermediates in hydrocarbon activation and functionalization reactions. The discovery of metal systems that enable their direct formation through photoexcitation with visible light could lead to advantageous synthetic methodologies. In this study, easily accessible dimers [Pt2(μ-Cl)2(C^N)2] (C^N = cyclometalated 2-arylpyridine) are demonstrated as a very convenient source of Pt(C^N) subunits, which promote photooxidative C–H addition reactions with different 2-arylpyridines (N′^C′H) upon irradiation with blue light. The resulting [PtH(Cl)(C^N)(C′^N′)] complexes are the first isolable Pt(iv) hydrides arising from a cyclometalation reaction. A transcyclometalation process involving three photochemical steps is elucidated, which occurs when the C^N ligand is a monocyclometalated 2,6-diarylpyridine, and a detailed analysis of the photoreactivity associated with the Pt(C^N) moiety is provided. Alkyne insertions into the Pt–H bond of a photogenerated Pt(iv) hydride are also reported as a demonstration of the ability of this class of compounds to undergo subsequent organometallic reactions.

The photochemical generation of isolable bis-cyclometalated Pt(iv) hydrides via photooxidative C–H addition reactions is demonstrated from easily accessible Pt(ii) precursors using visible light.  相似文献   

9.
The Rh-catalyzed C–H alkylation of benzylamines with alkenes using a picolinamide derivative as a directing group is reported. Both Rh(i) and Rh(ii) complexes can be used as active catalysts for this transformation. In addition, a flow set up was designed to successfully mimic this process under flow conditions. Several examples are presented under flow conditions and it was confirmed that a flow process is advantageous over a batch process. Deuterium labelling experiments were performed to elucidate the mechanism of the reaction, and the results indicated a possible carbene mechanism for this C–H alkylation process.

Rh(i)- and Rh(ii)-catalyzed C–H alkylation of benzylamines with alkenes using a picolinamide derivative as a directing group is reported under both batch and flow.  相似文献   

10.
In contrast to the classical method where a single molecule is designed to extract metal cations under specific conditions, dynamic covalent chemistry provides an approach based on the implementation of an adaptive dynamic covalent library for inducing the generation of the extractant species. This approach has been applied to the liquid–liquid extraction of copper(ii) nitrate based on a dynamic library of acylhydrazones constituents that self-build and distribute through the interface of a biphasic system. The addition of copper(ii) cations to this library triggers a modification of its composition and the up-regulation of the ligand molecules driven by coordination to the metal cations. Among these, one species has proven to be sufficiently lipophilic to play the role of carrier agent and its formation by component exchange enables the partial extraction of the copper(ii). The study of different pathways to generate the dynamic covalent library demonstrates the complete reversibility and the adaptability of the system. The detailed analytical investigation of the system provides a means to assess the mechanism of the dynamic extraction process.

Phase transfer of Cu(ii) cations is achieved by component exchange in a dynamic covalent library of acylhydrazone ligands. B1/B2 component exchange leads to the generation of a lipophilic carrier agent that extracts Cu(ii) into chloroform.  相似文献   

11.
Manganaelectro-catalyzed azidation of otherwise inert C(sp3)–H bonds was accomplished using most user-friendly sodium azide as the nitrogen-source. The operationally simple, resource-economic C–H azidation strategy was characterized by mild reaction conditions, no directing group, traceless electrons as the sole redox-reagent, Earth-abundant manganese as the catalyst, high functional-group compatibility and high chemoselectivity, setting the stage for late-stage azidation of bioactive compounds. Detailed mechanistic studies by experiment, spectrophotometry and cyclic voltammetry provided strong support for metal-catalyzed aliphatic radical formation, along with subsequent azidyl radical transfer within a manganese(iii/iv) manifold.

The merger of manganese-catalyzed C–H functionalization with electrosynthesis enabled C(sp3)–H azidation devoid of chemical oxidants or photochemical irradiation. Detailed mechanistic studies are supportive of a manganese(iii/iv) electrocatalysis.  相似文献   

12.
Herein, we report on our studies on the reaction of organoselenium compounds with triazoles under thermal conditions using simple Rh(ii) catalysts. These reactions do not provide the product of classic rearrangement reactions. Instead two different cascade reactions were uncovered. While allyl selenides react in a cascade of sigmatropic rearrangement and selenium-mediated radical cyclization reaction to give dihydropyrroles, cinnamyl selenides undergo a double rearrangement reaction cascade involving a final aza-Cope reaction to give the product of 1,3-difunctionalization. Theoretical and experimental studies were conducted to provide an understanding of the reaction mechanism of these cascade reactions. The former provide an important insight into fundamental question on the nature of the ylide intermediate in rearrangement reactions and reveal that organoselenium compounds take up multiple roles in rearrangement reactions and mediate a free ylide reaction mechanism.

Herein, we report on our studies on the reaction of organoselenium compounds with triazoles under thermal conditions using simple Rh(ii) catalysts.  相似文献   

13.
A chiral N,N′-dioxide/cobalt(ii) complex catalyzed highly diastereoselective and enantioselective tandem aza-Piancatelli rearrangement/intramolecular Diels–Alder reaction has been disclosed. Various valuable hexahydro-2a,5-epoxycyclopenta[cd]isoindoles bearing six contiguous stereocenters have been obtained in good yields with excellent diastereo- and enantio-selectivities from a wide range of both readily available 2-furylcarbinols and N-(furan-2-ylmethyl)anilines.

An asymmetric aza-Piancatelli rearrangement/Diels–Alder cascade reaction between 2-furylcarbinols and N-(furan-2-ylmethyl)anilines was realized by using a chiral N,N′-dioxide/cobalt(ii) complex catalyst.  相似文献   

14.
Selective activation of prodrugs at diseased tissue through bioorthogonal catalysis represents an attractive strategy for precision cancer treatment. Achieving efficient prodrug photoactivation in cancer cells, however, remains challenging. Herein, we report two Pt(iv) complexes, designated as rhodaplatins {rhodaplatin 1, [Pt(CBDCA-O,O)(NH3)2(RhB)OH]; rhodaplatin 2, [Pt(DACH)ox(RhB)(OH)], where CBDCA is cyclobutane-1,1-dicarboxylate, RhB is rhodamine B, DACH is (1R,2R)-1,2-diaminocyclohexane, and ox is oxalate}, that bear an internal photoswitch to realize efficient accumulation, significant co-localization, and subsequent effective photoactivation in cancer cells. Compared with the conventional platform of external photocatalyst plus substrate, rhodaplatins presented up to 4.8 104-fold increased photoconversion efficiency in converting inert Pt(iv) prodrugs to active Pt(ii) species under physiological conditions, due to the increased proximity and covalent bond between the photoswitch and Pt(iv) substrate. As a result, rhodaplatins displayed increased photocytotoxicity compared with a mixture of RhB and conventional Pt(iv) compound in cancer cells including Pt-resistant ones. Intriguingly, rhodaplatin 2 efficiently accumulated in the mitochondria and induced apoptosis without causing genomic DNA damage to overcome drug resistance. This work presents a new approach to develop highly effective prodrugs containing intramolecular photoswitches for potential medical applications.

The newly developed Pt(iv) prodrugs, rhodaplatins, contain an internal photoswitch and present up to 4.8 104-fold increased photoconversion efficiency compared to the conventional photocatalyst plus Pt(iv) prodrug photocatalysis platform.  相似文献   

15.
A prebiotically plausible route to enantioenriched glyceraldehyde is reported via a kinetic resolution mediated by peptides. The reaction proceeds via a selective reaction between the l-peptide and the l-sugar producing an Amadori rearrangement byproduct and leaving d-glyceraldehyde in excess. Solubility considerations in the synthesis of proline–valine (pro–val) peptides allow nearly enantiopure pro–val to be formed starting from racemic pro and nearly racemic (10%) ee val. (ee = enantiomeric excess = (|dl|)/(d + l)) Thus enantioenrichment of glyceraldehyde is achieved in a system with minimal initial chiral bias. This work demonstrates synergy between amino acids and sugars in the emergence of biological homochirality.

A prebiotically plausible route to enantioenriched glyceraldehyde is reported via a kinetic resolution mediated by peptides.  相似文献   

16.
The reactions of dipotassium germacyclopentadienediide with two Group 13 dichlorides, Cp*BCl2 and Cp*AlCl2, yield two structurally different products. In the case of boron a borole complex of germanium(ii) is obtained. The aluminium halide gives an unprecedented neutral germaaluminocene. Both compounds were fully characterised by multinuclear NMR spectroscopy supported by DFT computations. The molecular structure of the germaaluminocene was determined by XRD.

Boron vs. aluminum: the synthesis of a borole complex of Ge(ii) is reported. Changing just the element from boron to aluminum unexpectedly yields an unprecedented neutral germaaluminocene.  相似文献   

17.
A series of cerium(iv) mixed-ligand guanidinate–amide complexes, {[(Me3Si)2NC(NiPr)2]xCeIV[N(SiMe3)2]3−x}+ (x = 0–3), was prepared by chemical oxidation of the corresponding cerium(iii) complexes, where x = 1 and 2 represent novel complexes. The Ce(iv) complexes exhibited a range of intense colors, including red, black, cyan, and green. Notably, increasing the number of the guanidinate ligands from zero to three resulted in significant redshift of the absorption bands from 503 nm (2.48 eV) to 785 nm (1.58 eV) in THF. X-ray absorption near edge structure (XANES) spectra indicated increasing f occupancy (nf) with more guanidinate ligands, and revealed the multiconfigurational ground states for all Ce(iv) complexes. Cyclic voltammetry experiments demonstrated less stabilization of the Ce(iv) oxidation state with more guanidinate ligands. Moreover, the Ce(iv) tris(guanidinate) complex exhibited temperature independent paramagnetism (TIP) arising from the small energy gap between the ground- and excited states with considerable magnetic moments. Computational analysis suggested that the origin of the low energy absorption bands was a charge transfer between guanidinate π orbitals that were close in energy to the unoccupied Ce 4f orbitals. However, the incorporation of sterically hindered guanidinate ligands inhibited optimal overlaps between Ce 5d and ligand N 2p orbitals. As a result, there was an overall decrease of ligand-to-metal donation and a less stabilized Ce(iv) oxidation state, while at the same time, more of the donated electron density ended up in the 4f shell. The results indicate that incorporating guanidinate ligands into Ce(iv) complexes gives rise to intense charge transfer bands and noteworthy electronic structures, providing insights into the stabilization of tetravalent lanthanide oxidation states.

A series of cerium(iv) mixed-ligand guanidinate-amide complexes, {[(Me3Si)2NC(NiPr)2]xCeIV[N(SiMe3)2]3−x}+ (x = 0−3), was prepared by chemical oxidation and studied spectroscopically and computationally, revealing trends in 4f/5d orbital occupancies.  相似文献   

18.
Heterocycles have been widely used in organic synthesis, agrochemical, pharmaceutical and materials science industries. Catalytic three-component ylide formation/cycloaddition enables the assembly of complex heterocycles from simple starting materials in a highly efficient manner. However, asymmetric versions remain a yet-unsolved task. Here, we present a new bimetallic catalytic system for tackling this challenge. A combined system of Rh(ii) salt and chiral N,N′-dioxide–Sm(iii) complex was established for promoting the unprecedented tandem carbonyl ylide formation/asymmetric [4 + 3]-cycloaddition of aldehydes and α-diazoacetates with β,γ-unsaturated α-ketoesters smoothly, affording various chiral 4,5-dihydro-1,3-dioxepines in up to 97% yield, with 99% ee. The utility of the current method was demonstrated by conversion of products to optically active multi-substituted tetrahydrofuran derivatives. A possible reaction mechanism was provided to elucidate the origin of chiral induction based on experimental studies and X-ray structures of catalysts and products.

Catalytic asymmetric tandem carbonyl ylide formation/[4 + 3]-cycloaddition of β,γ-unsaturated α-ketoesters, aldehydes and α-diazoacetates was achieved by using a bimetallic rhodium(ii)/chiral N,N′-dioxide–Sm(iii) complex catalyst.  相似文献   

19.
A hydroxamate transfer reaction between metal complexes has been investigated by a combination of experimental and theoretical studies. A hydroxamate-bound cobalt(ii) complex bearing a tetradentate macrocyclic ligand, [CoII(TBDAP)(CH3C(–NHO)O)]+ (1), is prepared by the reduction of a hydroximatocobalt(iii) complex with a biological reductant. Alternatively, 1 is accessible via a synthetic route for the reaction between the cobalt(ii) complex and acetohydroxamic acid in the presence of a base. 1 was isolated and characterized by various physicochemical methods, including UV-vis, IR, ESI-MS, and X-ray crystallography. The hydroxamate transfer reactivity of 1 was examined with a zinc complex, which was followed by UV-vis and ESI-MS. Kinetic and activation parameter data suggest that the hydroxamate transfer reaction occurs via a bimolecular mechanism, which is also supported by DFT calculations. Moreover, 1 is able to inhibit the activity against a zinc enzyme, i.e., matrix metalloproteinase-9. Our overall investigations of the hydroxamate transfer using the synthetic model system provide considerable insight into the final step involved in the inhibition of zinc-containing enzymes.

A hydroxamate transfer reaction between metal complexes has been investigated by a combination of experimental and theoretical studies.  相似文献   

20.
A novel dinuclear platinum(ii) complex featuring a ditopic, bis-tetradentate ligand has been prepared. The ligand offers each metal ion a planar O^N^C^N coordination environment, with the two metal ions bound to the nitrogen atoms of a bridging pyrimidine unit. The complex is brightly luminescent in the red region of the spectrum with a photoluminescence quantum yield of 83% in deoxygenated methylcyclohexane solution at ambient temperature, and shows a remarkably short excited state lifetime of 2.1 μs. These properties are the result of an unusually high radiative rate constant of around 4 × 105 s−1, a value which is comparable to that of the very best performing Ir(iii) complexes. This unusual behaviour is the result of efficient thermally activated reverse intersystem crossing, promoted by a small singlet–triplet energy difference of only 69 ± 3 meV. The complex was incorporated into solution-processed OLEDs achieving EQEmax = 7.4%. We believe this to be the first fully evidenced report of a Pt(ii) complex showing thermally activated delayed fluorescence (TADF) at room temperature, and indeed of a Pt(ii)-based delayed fluorescence emitter to be incorporated into an OLED.

Efficient thermally activated delayed fluorescence (TADF) in a brightly luminescent diplatinum(ii) complex results in significant enhancement of the radiative decay rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号