首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Halogens possess among the highest electron affinities of elements in the periodic table. Superhalogen molecules with electron affinities higher than those of halogen atoms have been known to form when a metal atom is surrounded with halogen atoms. Recently, it was discovered that a new class of molecules called hyperhalogens with electron affinities higher than those of superhalogens can form when the latter serve as the building block. By use of density functional theory and B3LYP hybrid exchange-correlation functional we show that molecules with electron affinities even higher can be formed by using hyperhalogens as building blocks. We demonstrate this by using Na and Li as metal atoms and F, BF(4), and Na(BF(4))(2) as halogen, superhalogen, and hyperhalogen building blocks. The predicted electron affinities of Na[Na(BF(4))(2)](2) and Li[Li(BF(4))(2)](2) are 9.18 and 9.01 eV, which are, respectively, 0.85 and 0.5 eV higher than those of their hyperhalogen [Na(BF(4))(2) and Li(BF(4))(2)] counterparts.  相似文献   

2.
In organic synthesis, due to their high electrophilicity and leaving group properties, halogens play pivotal roles in the activation and structural derivations of organic compounds. Recently, cyclizations induced by halogen groups that allow the production of diverse targets and the structural reorganization of organic molecules have attracted significant attention from synthetic chemists. Electrophilic halogen atoms activate unsaturated and saturated hydrocarbon moieties by generating halonium intermediates, followed by the attack of carbon-containing, nitrogen-containing, oxygen-containing, and sulfur-containing nucleophiles to give highly functionalized carbocycles and heterocycles. New transformations of halogenated organic molecules that can control the formation and stereoselectivity of the products, according to the difference in the size and number of halogen atoms, have recently been discovered. These unique cyclizations may possibly be used as efficient synthetic strategies with future advances. In this review, innovative reactions controlled by halogen groups are discussed as a new concept in the field of organic synthesis.  相似文献   

3.
The electron affinities of organic molecules obeying Hückel's rule of aromaticity are vanishingly small, if not negative. For example, benzene, a classic example of an aromatic molecule, has an electron affinity of −1.15 eV. Using density functional theory, we have systematically calculated the electron affinities and vertical detachment energies of C6H6 by substituting H with halogen (F) and superhalogen (BO2) moieties, as well as replacing one of the C atoms with B. The ground state geometries were obtained by examining about 330 isomers. The electron affinities are found to steadily increase with these substitutions/replacements, even surpassing that of Cl, the element with the highest electron affinity in the periodic table, in the case of C5BH(BO2)5. In some special cases such as C6H5(BO2) the electron affinity and vertical detachment energy differ by as much as 5 eV, indicating substantial changes in the geometry as the electron is removed from the anion. We hope that the ability to change the negative electron affinity of C6H6 to large positive values by substituting H and/or replacing C atom will motivate experimental studies.  相似文献   

4.
Using first‐principles calculations with predictive capability we show that organic molecules having negative electron affinity can be transformed to superhalogens with electron affinities far exceeding that of chlorine, once its core and ligand atoms are suitably replaced. The discovery of organic superhalogens could have significant impact in chemistry, allowing the synthesis of new materials and compounds.  相似文献   

5.
Carbon substrates are readily functionalized with alkene-containing molecules via an ultraviolet-light-catalyzed reaction, resulting in the formation of a carbon-carbon bond with the surface. This reaction is typically performed on hydrogen-terminated carbon substrates, limiting its utility as alkene molecules with low electron affinities do not readily attach to this surface. Recently, a wet-chemical method for preparing bromine- and chlorine-terminated carbon substrates has been developed. Replacing the terminal hydrogen atoms with a halogen analog increases the surface's reactivity with alkene-containing molecules, affording a means of modifying the carbon substrate with the alkene molecules that do not readily attach to the hydrogen-terminated surface and with a greatly reduced reaction time.  相似文献   

6.
Using density functional theory with hybrid exchange-correlation potential, we have calculated the geometrical and electronic structure, relative stability, and electron affinities of MnX(n) compounds (n = 1-6) formed by a Mn atom and halogen atoms X = F, Cl, and Br. Our objective is to examine the extent to which the Mn-X interactions are similar and to elucidate if/how the half-filled 3d-shell of a Mn atom participates in chemical bonding as the number of halogen atoms increases. While the highest oxidation number of the Mn atom in fluorides is considered to be +4, the maximum number of halogen atoms that can be chemically attached in the MnX(n)(-) anions is 6 for X = F, 5 for X = Cl, and 4 for X = Br. The MnCl(n) and MnBr(n) neutrals are superhalogens for n ≥ 3, while the superhalogen behavior of MnF(n) begins with n = 4. These results are explained to be due to the way different halogen atoms interact with the 3d electrons of Mn atom.  相似文献   

7.
A series of complexes formed between halogen-containing molecules and ammonia have been investigated by means of the atoms in molecules (AIM) approach to gain a deeper insight into halogen bonding. The existence of the halogen bond critical points (XBCP) and the values of the electron density (Pb) and Laplacian of electron density (V2pb) at the XBCP reveal the closed-shell interactions in these complexes. Integrated atomic properties such as charge, energy, polarization moment, volume of the halogen bond donor atoms, and the corresponding changes (△) upon complexation have been calculated. The present calculations have demonstrated that the halogen bond represents different AIM properties as compared to the well-documented hydrogen bond. Both the electron density and the Laplacian of electron density at the XBCP have been shown to correlate well with the interaction energy, which indicates that the topological parameters at the XBCP can be treated as a good measure of the halogen bond strength In addition, an excellent linear relationship between the interatomic distance d(X…N) and the logarithm of Pb has been established.  相似文献   

8.
Using ab initio calculations, the authors' predicted for the first time that the halogen-bonded complex FBrdelta+...delta+BrF and hydrogen-bonded complex FBrdelta+...delta+HF formed by the interactions between two positively charged atoms of different polar molecules can be stable in gas phase. It shows that halogen bond or hydrogen bond not only exists between oppositely charged atoms but also between like-charged atoms. That the attraction arising from the special halogen bond or hydrogen bond can exceed the electrostatic repulsion between two contact positively charged atoms stabilizes the complex. Of course, from the point of view of physics they can consider the interactions in FBrdelta+...delta+BrF and FBrdelta+...delta+HF as mainly the sum of the long range molecular interactions, namely, electrostatic, induction, and dispersion with some short-range repulsion. They found that the intermolecular electron correlation contribution representing dispersion interaction plays a crucial role in the stabilities of seemingly repulsive complexes FBrdelta+...delta+BrF and FBrdelta+...delta+HF.  相似文献   

9.
Halogen bonding, a specific intermolecular noncovalent interaction, plays crucial roles in fields as diverse as molecular recognition, crystal engineering, and biological systems. This paper presents an ab initio investigation of a series of dimeric complexes formed between bromobenzene and several electron donors. Such small model systems are selected to mimic halogen bonding interactions found within crystal structures as well as within biological molecules. In all cases, the intermolecular distances are shown to be equal to or below sums of van der Waals radii of the atoms involved. Halogen bonding energies, calculated at the MP2/aug-cc-pVDZ level, span over a wide range, from -1.52 to -15.53 kcal/mol. The interactions become comparable to, or even prevail over, classical hydrogen bonding. For charge-assisted halogen bonds, calculations have shown that the strength decreases in the order OH- > F- > HCO2- > Cl- > Br-, while for neutral systems, their relative strengths attenuate in the order H2CS > H2CO > NH3 > H2S > H2O. These results agree with those of the quantum theory of atoms in molecules (QTAIM) since bond critical points (BCPs) are identified for these halogen bonds. The QTAIM analysis also suggests that strong halogen bonds are more covalent in nature, while weak ones are mostly electrostatic interactions. The electron densities at the BCPs are recommended as a good measure of the halogen bond strength. Finally, natural bond orbital (NBO) analysis has been applied to gain more insights into the origin of halogen bonding interactions.  相似文献   

10.
The nature of halogen bonding in five complexes formed between the thiocyanate (NCS) radical and a BrCl molecule was analyzed by quantum theory of atoms in molecules (QTAIM) and electron‐localization function (ELF) in this paper. The calculated results show that the geometry of the halogen atom bonded at the N‐atom is stable than those bonded at S‐ or C‐atom. The molecular electrostatic potentials determine the geometries and stabilities of the complexes. The valence basin of the S‐ or N‐atom in the electron‐donating NCS radical is compressed and its population decreases during the process of formation of the halogen‐bonded complexes.  相似文献   

11.
Negative ions of transition metal-halogen clusters   总被引:1,自引:0,他引:1  
A systematic density functional theory based study of the structure and spectroscopic properties of neutral and negatively charged MX(n) clusters formed by a transition metal atom M (M=Sc,Ti,V) and up to seven halogen atoms X (X=F,Cl,Br) has revealed a number of interesting features: (1) Halogen atoms are bound chemically to Sc, Ti, and V for n≤n(max), where the maximal valence n(max) equals to 3, 4, and 5 for Sc, Ti, and V, respectively. For n>n(max), two halogen atoms became dimerized in the neutral species, while dimerization begins at n=5, 6, and 7 for negatively charged clusters containing Sc, Ti, and V. (2) Magnetic moments of the transition metal atoms depend strongly on the number of halogen atoms in a cluster and the cluster charge. (3) The number of halogen atoms that can be attached to a metal atom exceeds the maximal formal valence of the metal atom. (4) The electron affinities of the neutral clusters abruptly rise at n=n(max), reaching values as high as 7 eV. The corresponding anions could be used in the synthesis of new salts, once appropriate counterions are identified.  相似文献   

12.
Super‐ and hyperhalogens are a class of highly electronegative species whose electron affinities far exceed those of halogen atoms and are important to the chemical industry as oxidizing agents, biocatalysts, and building blocks of salts. Using the well‐known Wade–Mingos rule for describing the stability of closo‐boranes BnHn2? and state‐of‐the‐art theoretical methods, we show that a new class of super‐ and hyperhalogens, guided by this rule, can be formed by tailoring the size and composition of borane derivatives. Unlike conventional superhalogens, in which a central metal atom is surrounded by halogen atoms, the superhalogens formed according to the Wade–Mingos rule do not have to have either halogen or metal atoms. We demonstrate this by using B12H13 and its isoelectronic cluster CB11H12 as examples. We also show that while conventional superhalogens containing alkali atoms require at least two halogen atoms, a single borane‐like moiety is sufficient to give M(B12H12) clusters (M=Li, Na, K, Rb, Cs) superhalogen properties. In addition, hyperhalogens can be formed by using the above superhalogens as building blocks. Examples include M(B12H13)2 and M(CB11H12)2 (M=Li–Cs). This finding opens the door to an untapped source of superhalogens and weakly coordinating anions with potential applications.  相似文献   

13.
Molecular and fragment negative ions are produced from the collisions between rubidium atoms and several kinds of halogenated unsaturated organic molecules in crossed supersonic beams. Their apparent electron affinities and the bond dissociation energies are measured.  相似文献   

14.
The differences in the extent of electron-attachment reactions between thermal electrons and selected classes of organic molecules with high electron affinities were investigated. The investigations showed that interactions of thermal electrons with nitroaromatic compounds lead to the formation of neutral products with very low electron affinities. By contrast, a number of other analytes with high electron affinities such as polyhalogenated organic compounds, lead to products with high electron affinities. This difference was exploited to differentiate between nitroaromatic and polychlorinated organic compounds with a tandem arrangement consisting of two electron-capture detectors connected in series with an electron-attachment reactor.  相似文献   

15.
Nanoarchitectonics on graphene implicates a specific and exact anchoring of molecules or nanoparticles onto the surface of graphene. One such example of an effective anchoring group that is highly reactive is the halogen moiety. Herein we describe a simple and scalable method for the introduction of halogen (chlorine, bromine, and iodine) moieties onto the surface of graphene by thermal exfoliation/reduction of graphite oxide in the corresponding gaseous halogen atmosphere. We characterized the halogenated graphene by using various techniques, including scanning and transmission electron microscopy, Raman spectroscopy, high‐resolution X‐ray photoelectron spectroscopy, and electrochemistry. The halogen atoms that have successfully been attached to the graphene surfaces will serve as basic building blocks for further graphene nanoarchitectonics.  相似文献   

16.
Samanta D  Wu MM  Jena P 《Inorganic chemistry》2011,50(18):8918-8925
Electron affinity (EA) is one of the most important factors that govern reactivity of atoms and molecules. Chlorine, with the highest electron affinity (3.6 eV) of all elements in the periodic table, is a classic example of reactive elements. Over past thirty years, much research has been done to expand the scope of molecules with electron affinities even larger than that of Cl. These molecules, called superhalogens, have the general formula MX(n+1) where M is a metal atom, X is a halogen atom, and n is the valency of the metal. In this paper we explore the potential of pseudohalogens such as CN, which mimic the chemistry of halogens, to serve as building blocks of new superhalogens. Using calculations based on density functional theory, we show that when a central Au atom is surrounded by CN moieties, superhalogens can be created with electron detachment energies as high as 8.4 eV. However, there is a stark contrast between the stability of these superhalogens and that of conventional AuF(n) superhalogens. Whereas AuF(n) complexes are stable up to n = 5 for neutrals and n = 6 for anions, Au(CN)(n) complexes (with CN moieties attached individually) are metastable beyond n = 1 for neutrals and n = 3 for anions. We investigate the nature and origin of these differences. In addition, we elucidate important distinctions between electron affinity (EA) and adiabatic detachment energy (ADE), two terms that are often used synonymously in literature.  相似文献   

17.
Density functional theory calculations were performed to explore the influence of halogenation on the reorganization energies (λ), adiabatic ionization potentials (IPs), adiabatic electron affinities (EAs), and air stabilities of a series of pentacene (PENT) and tetraceno[2,3-b]thiophene (TbTH) derivatives. According to calculated IP and EA values, all well-known PENT and TbTH derivatives in this paper are air-stable p-channel but not air-stable n-channel organic field-effect transistors (OFETs) due to insufficient EAs, consistent with experimental observations. The calculated results show that attaching two or more halogen atoms onto air-unstable 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene (TIPS-N4PENT) is sufficient for promoting ambipolar air-stable properties. The electronic coupling and band structure calculations indicate that halogenated TIPS-N4PENT derivatives have potential applications in high-performance ambipolar air-stable OFETs. They also provide rational guidelines for the design of ambipolar air-stable organic semiconductors (OSCs).  相似文献   

18.
The poor uptake of fluorescent probes and therapeutics by mammalian cells is a major concern in biological applications ranging from fluorescence imaging to drug delivery in living cells. Although gaseous molecules such as oxygen and carbon dioxide, hydrophobic substances such as benzene, and small polar but uncharged molecules such as water and ethanol can cross the cell plasma membrane by simple passive diffusion, many synthetic as well as biological molecules require specific membrane transporters and channel proteins that control the traffic of these molecules into and out of the cell. This work reports that the introduction of halogen atoms into a series of fluorescent molecules remarkably enhances their cellular uptake, and that their transport can be increased to more than 95 % by introducing two iodine atoms at appropriate positions. The nature of the fluorophore does not play a major role in the cellular uptake when iodine atoms are present in the molecules, as compounds bearing naphthalimide, coumarin, BODIPY, and pyrene moieties show similar uptakes. Interestingly, the introduction of a maleimide-based fluorophore bearing two hydroxyethylthio moieties allows the molecules to cross the plasma and nuclear membranes, and the presence of iodine atoms further enhances the transport across both membranes. Overall, this study provides a general strategy for enhancing the uptake of organic molecules by mammalian cells.  相似文献   

19.
The net atomic charge parameters for halogen atoms and the atoms in aromatic molecules have been determined by the modified partial equalization of orbital electronegativity method. The same parameters are used for the halogen atoms both in aromatic and nonaromatic systems. The calculated dipole moments of haloalkanes agree well with experiment, but those of the halogenated aromatic molecules do not reproduce the experimental values as well as those of the haloalkanes; in particular, the computed dipole moments for monohalogenated benzenes are all lower than the experimental values because of the influence of the lonepair electrons on the halogens. Within the limitations of an atom-centered point-charge approximation, our calculated dipole moments, both for haloalkanes and halogented aromatic molecules, agree well with experimental values. © John Wiley & Sons, Inc.  相似文献   

20.
Experimental electron‐density studies based on high‐resolution diffraction experiments allow halogen bonds between heavy halogens to be classified. The topological properties of the electron density in Cl…Cl contacts vary smoothly as a function of the interaction distance. The situation is less straightforward for halogen bonds between iodine and small electronegative nucleophiles, such as nitrogen or oxygen, where the electron density in the bond critical point does not simply increase for shorter distances. The number of successful charge–density studies involving iodine is small, but at least individual examples for three cases have been observed. (a) Very short halogen bonds between electron‐rich nucleophiles and heavy halogen atoms resemble three‐centre–four‐electron bonds, with a rather symmetric heavy halogen and without an appreciable σ hole. (b) For a narrow intermediate range of halogen bonds, the asymmetric electronic situation for the heavy halogen with a pronounced σ hole leads to rather low electron density in the (3,?1) critical point of the halogen bond; the properties of this bond critical point cannot fully describe the nature of the associated interaction. (c) For longer and presumably weaker contacts, the electron density in the halogen bond critical point is only to a minor extent reduced by the presence of the σ hole and hence may be higher than in the aforementioned case. In addition to the electron density and its derived properties, the halogen–carbon bond distance opposite to the σ hole and the Raman frequency for the associated vibration emerge as alternative criteria to gauge the halogen‐bond strength. We find exceptionally long C—I distances for tetrafluorodiiodobenzene molecules in cocrystals with short halogen bonds and a significant red shift for their Raman vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号