首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
This work aims to elucidate whether the hypothesis of zero oxygen at the mixture layer when flame takes place is assumable for every kind of material. For that purpose, we investigated the oxygen concentration there by cone calorimeter tests. A modified holder was developed in order to collect oxygen in this mixture layer. In addition, thermogravimetric tests were carried out so as to relate the possible effects of the presence of oxygen in the atmosphere where the pyrolysis process takes place, since the cone calorimeter does not allow to control the oxygen level of the atmosphere during the experiment. The reaction rates and per cent of residue in the cone calorimetric tests were measured and compared with the results from thermogravimetric tests. Six products were analysed which can be classified in three main groups: lignocellulosic, thermoplastic polymers and thermoset polymers. Cone calorimetric results showed that for some of the materials analysed (PET, Nylon and PUR foam) the oxygen level at mixture layer decreased until values close to zero. The comparison of reaction rates between cone calorimetric and thermogravimetric tests revealed the char layer created in cone calorimetric tests over the exposed face for brushed fir, Nylon and PET established an important heat barrier that modifies the thermal behaviour of these materials.  相似文献   

2.
Ramie fiber (RF) with excellent tensile strength was treated by a flame retardant and obtained the modified RF (MRF) that is incombustible. Then, MRF was used to improve the performance of rigid polyurethane foams (RPUF). The mechanical properties of the composite were investigated by compressive strength test and shear stress test. The fire characteristics were studied using a cone calorimeter. And the thermal decomposition and flammable properties were further evaluated using thermogravimetric analysis and limiting oxygen index. The results showed that MRF improve the mechanical properties of RPUF and eliminate the harm of flammability of RF on the RPUF.  相似文献   

3.
The surface chemical modified aluminum hypophosphite (AHP) defined as MAHP was successful prepared through P–H bonds on AHP surface reacted with the aldehyde groups in hexa‐(4‐aldehyde‐phenoxy)‐cyclotriphosphazene made in our lab. The wettability of the flame retardants was evaluated by water contact angle tests, and the water contact angle of the prepared MAHP dramatically increased from 0° for AHP to 145°, which indicated the surface modification made the superhydrophilic AHP into superior hydrophobic MAHP. The prepared MAHP and AHP, respectively, incorporated into polyamide 6 (PA6) matrix to prepare flame retardant PA6 composites and the fire retardancy and thermal degradation behavior of flame retardant PA6 composites were investigated by limiting oxygen index, vertical burning test (UL‐94), cone calorimeter, and thermogravimetric analysis tests. The morphologies and chemical compositions of the char residues for PA6 composites were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy, respectively. The water resistant properties of flame retardant PA6 composites were evaluated by putting the samples into distilled water at 70°C for 168 hr, and the mechanical properties for flame retardant PA6 composites were investigated by the tensile, flexural, and Izod impact strength tests. The results demonstrated that the PA6/MAHP composites successfully passed UL‐94 V‐0 flammability rating, and the limiting oxygen index value was 27.6% when the loading amount of MAHP was 21 wt%. However, there is no rating in vertical burning tests for PA6/AHP composite with the same amount of AHP, which indicated the surface modification of AHP enhanced the flame retardancy efficiency for PA6 composites. The morphological structures and analysis of X‐ray photoelectron spectroscopy of char residues revealed that the surface modification of AHP benefited to the formation of a sufficient, flame retardant elements rich, more compact and homogeneous char layer on the materials surface during combustion, which prevented the heat transmission and diffusion, limit the production of combustible gases, inhibit the emission of smoke and then led to the reduction of the heat release rate and smoke produce rate. The mechanical properties results revealed that the surface modification of AHP enhanced the mechanical properties, especially the Izod impact strength comparing with that of PA6/AHP composites with the same amount of flame retardant. After water resistance tests, the PA6/MAHP composites remained superior flame retardancy and presented continuous and compact char layer after cone calorimeter tests; however, the fire retardancy for PA6/AHP composite obviously decreased, and the char layer was discontinuous with big hole caused by the extraction of AHP by water during water resistance tests. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Palladium composite membranes were prepared on stainless steel (SUS) supports modified by nickel submicron powder and colloidal silica sols. Permeation tests of the palladium composite membranes were carried out at high temperature in order to observe the thermal stability of the membrane. The palladium composite membrane failed with formation of plenty of pinholes in the presence of hydrogen at high temperature. The failure of the composite membrane was verified by comparing the nitrogen permeance before hydrogen permeation test with that after hydrogen permeation test and comparing the H2/N2 selectivity for single gas permeation test with that for mixture gas permeation test. The variation of the membrane surface due to the failure of the membrane was characterized in scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDS) analyses. As a result, it can be concluded that reducible metal oxides can be attributed to the failure of the composite membranes resulting from reduction of the metal oxides by hydrogen whichever position in the membrane the metal oxides are layered.  相似文献   

5.
The interference stress relaxation in a composite repair bandage formed on a cylindrical metal surface was studied. The creep of a repair ring bandage under the action of interference stresses was evaluated. The results of the calculation of the creep and the interference stress relaxation of a composite ring on a sample made of a segment of a metal pipe in time are presented.  相似文献   

6.
Ammonium polyphosphate (APP)/polypropylene (PP) composites were prepared by melt blending and extrusion in a twin-screw extruder. APP was first modified by a silane coupling agent KH-550 then added to polypropylene. The surface modification of APP by the coupling agent decreased its water solubility and its interface compatibility with the PP matrix. Limiting oxygen index (LOI) and thermogravimetric analysis (TGA) were used to characterize the flame retardant property and the thermal stability of the composites. The addition of APP improved the flame retardancy of PP remarkably. The crystal structures of APP/PP composites were characterized by X-ray diffraction (XRD). The results indicated that β-crystal phase PP may be formed. The structures and morphologies of APP, KH-550/APP and APP/PP composites were characterized by field-emission scanning electron microscope (FESEM). The mechanical property tests showed good mechanical properties of composite materials. Compared with unmodified one, the impact strength, tensile strength and elongation of modified APP/PP were all improved.  相似文献   

7.

According to structural characteristics, composites are classified as laminated structure and sandwich structure. Carbon/epoxy laminate and foam core sandwich composite are the most commonly used laminate and sandwich structure material in the aircraft industry. The flammability of epoxy resins and foam core material is an inherent hazard. Many previous studies focused primarily on their mechanical properties, while the studies on the thermal and fire properties of carbon/epoxy laminate and its foam core sandwich composite have rarely conducted. Therefore, to characterize their thermal and fire properties, a comprehensive experimental investigation and theoretical analysis were carried out in this work using thermogravimetric analysis, cone calorimeter, vertical/horizontal burning tests, limiting oxygen index and scanning electron microscope tests. Several typical characteristic parameters were obtained and analyzed, such as pyrolysis temperature, heat release rate, mass loss, flaming spread rate and limiting oxygen index. These experimental data coupled with theoretical analysis can provide support for fire risk assessment and fire protection design in aircrafts. The carbon/epoxy laminate and foam core sandwich composite are both characterized as the thermally thick materials. The ignition models and mass loss rate models were obtained. Foam core material negatively affects most of the thermal and fire properties of sandwich composite, but the foam core sandwich composite has self-extinguishing behavior during horizontal burning tests, whose LOI is higher than that of carbon/epoxy laminate. Thus, an important conclusion was reached that the ignition position and flame spread direction have critical effect on the fire behavior of foam core material.

  相似文献   

8.
受猪笼草口缘区润滑效应启发,将低表面能液体注入高分子微纳米多孔结构中可构筑高分子固液复合界面.与超疏水固体界面相比,固液复合界面展现出独特的浸润性和黏附性.界面黏附是高分子复合材料重要的性质之一,实现界面黏附的精准调控对促进这类材料的发展和应用具有至关重要的作用.本文重点从稳定性调控、方向性调控以及原位可逆调控3个方面综述提升固液复合界面黏附可控性的工作,通过在表面微米结构中组装纳米层状及异质纳米层状结构,提高界面黏附的稳定性;使用界面薄层定向冷冻干燥法、激光刻蚀法以及复型法等方法,构筑具有取向结构的高分子固液复合界面,实现界面黏附的方向性调控;通过在界面中引入快速响应的智能基元,设计智能响应高分子固液复合界面,实现界面黏附的原位可逆调控.最后,概述了这类材料目前存在的问题并展望了其未来发展的方向.  相似文献   

9.
锂金属具有高比容量(3860 mA·h/g)和低电化学电位(-3.04 V vs. SHE), 是一种极具潜力的新型电池负极材料. 然而, 锂金属电化学稳定性差, 导致电池循环寿命受限, 容易产生枝晶, 造成电池短路, 引发安全风险, 而其对空气及环境的高度敏感性也极大增加了电池制作的难度与成本, 限制了其应用推广. 改善锂金属负极的界面稳定性被认为是提升锂金属电池性能的重要途径. 本文通过简单直接的热压法在锂金属负极表面构筑了聚偏氟乙烯(PVDF)基双功能保护层, 使锂金属的空气稳定性提升至约120 min, 并延长了锂金属对称电池的循环寿命至约1200 h; 再通过在PVDF保护层内引入亲锂的SnO2粒子, 形成的无机有机复合保护层可以通过原位合金化反应提供锂沉积的形核位点, 在保持良好循环稳定性的基础上进一步降低成锂沉积的过电位, 极化过电位从0.016 V降低到0.007 V. 含有该保护层的全电池展现出约200次的长循环寿命与90%以上的高容量保持率, 在3C高倍率下放电比容量仍达127 mA·h/g. 提出的双功能电极界面保护层策略能有效提升锂金属负极空气稳定性和电化学性能.  相似文献   

10.
Interface is an important microstructure for advanced polymer‐matrix composite. The composite interface is the bridge and the link for stress transferring between the fiber and the matrix resin. In this work, oxygen plasma treatment was used for modification of aramid fiber surface. The effects of plasma treatment power on interlaminar shear strength of composite were evaluated by short‐beam shear test. The morphologies of both the aramid fiber surface and its composite interface fracture were observed by SEM. The chemical structure and surface chemical composition of the plasma‐treated and separated fibers were analyzed by Fourier transform infrared (FTIR) and XPS, respectively. The results showed that the interlaminar shear strength of composite was enhanced by 33% with plasma treatment power of 200 W. The FTIR and XPS results indicated that the active functional groups were introduced onto the aramid fiber surface by plasma treatment forming chemical bonds with the poly(phthalazinone ether sulfone ketone) resin. The SEM results proved that the aramid fiber surface was roughened by plasma treatment enhancing the mechanical bond with the poly(phthalazinone ether sulfone ketone) resin. The composite rupture occurred from the composite interface to the fiber or the matrix resin. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Electrospun nanofibers have attracted great attention as potential reinforcements in composite application due to their high specific surface area, high porosity, and versatility. Because the electrospun nanofibers exhibit relatively low mechanical strength due to low crystallinity and random alignment, many researchers have tried to enhance the mechanical strength through various approaches, such as heat treatment and fiber orientation control. These methods, however, are difficult to control and require the use of high temperatures and sophisticated apparatuses, and high costs. In this study, we investigate a novel microwave technique to fabricate high‐strength electrospun meta‐aramid nanofiber mats. To optimize the microwave irradiation conditions, the electrospun nanofiber was treated at varying levels of moisture and for different irradiation times. Field emission scanning electron microscopy was used to observe the surface morphology of the electrospun nanofiber mats at the different irradiation times. The changes in the crystallinity and thermal properties were investigated using X‐ray diffraction and thermogravimetric analysis measurements. Tensile tests were performed to measure the mechanical strength of the meta‐aramid nanofiber mats with respect to each parameter. As a result, any residual solvents and salts were removed, and the degree of crystallization was dramatically increased by microwave irradiation under wet conditions. These effects led to a 2.8‐fold increase in the tensile strength of the nanofiber mats compared with an untreated mat. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 807–814  相似文献   

12.
In organics-based (opto)electronic devices, the interface dipoles formed at the organic/metal interfaces play a key role in determining the barrier for charge (hole or electron) injection between the metal electrodes and the active organic layers. The origin of this dipole is rationalized here from the results of a joint experimental and theoretical study based on the interaction between acrylonitrile, a pi-conjugated molecule, and transition metal surfaces (Cu, Ni, and Fe). The adsorption of acrylonitrile on these surfaces is investigated experimentally by photoelectron spectroscopies, while quantum mechanical methods based on density functional theory are used to study the systems theoretically. It appears that the interface dipole formed at an organic/metal interface can be divided into two contributions: (i) the first corresponds to the "chemical" dipole induced by a partial charge transfer between the organic layers and the metal upon chemisorption of the organic molecules on the metal surface, and (ii) the second relates to the change in metal surface dipole because of the modification of the metal electron density tail that is induced by the presence of the adsorbed organic molecules. Our analysis shows that the charge injection barrier in devices can be tuned by modulating various parameters: the chemical potential of the bare metal (given by its work function), the metal surface dipole, and the ionization potential and electron affinity of the organic layer.  相似文献   

13.
In this study, a hybrid nanopaper consisting of carbon nanofiber (CNF) and polyhedral oligomeric silsequioxane (POSS) or cloisite Na+ clay, has been fabricated through the papermaking process. The hybrid nanopaper was then coated on the surface of glass fiber (GF) reinforced polymer matrix composites through resin transfer molding (RTM) process. The morphologies of the hybrid nanopaper and resulting nanocomposites were characterized with scanning electron microscopy (SEM). It can be seen that the nanopaper had a porous structure with highly entangled carbon nanofibers and the polyester resin completely penetrated the nanopaper throughout the thickness. The thermal decomposition behavior of the hybrid nanopapers and nanocomposites was studied with the real‐time thermogravimetric analysis/ flourier transform infrared spectrometry (TGA/FTIR). The test results indicate that the addition of pristine nanoclay increased the thermal stability of the nanopaper, whereas the POSS particles decreased the thermal stability of the nanopaper. The fire retardant performance of composite laminates coated with the hybrid nanopaper was evaluated with cone calorimeter tests using a radiated heat flux of 50 kW/m2. The cone calorimeter test results indicate that the peak heat release rate (PHRR) decreased dramatically in composite laminates coated with the CNF‐clay nanopaper. However, the PHRRs of the CNF‐POSS nanopaper coated composite laminates increased. The formation of compact char materials was observed on the surface of the residues of the CNF‐clay nanopaper after cone calorimeter test. The flame retardant mechanisms of the hybrid nanopaper in the composite laminates are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The morphology and thermal behaviour of polypropylene/polyamide 6 (PP/PA6), polypropylene/copolymer ethylene propylene diene (PP/PEBAX) and polypropylene/rigid polyurethane (PP/PUR) blends compatibilised with polypropylene-graft-maleic anhydride (PP-g-MA) were studied using scanning electron microscopy and thermogravimetric analyses. The study focuses on the influence of different blends obtained by mixing a thermoplastic, thermoplastic elastomer or thermoset with PP, compatibilised with PP-g-MA. The compatibilising effect of PP-g-MA in an immiscible PP/PA6 blend induces a homogeneous dispersion due to interfacial adhesion. For the PP/PEBAX and PP/PUR binary blends studied slight changes in the morphology were observed with a continuous phase but the PEBAX or PUR domains remained in the PP matrix. The deconvolution of the TGA curve permitted an evaluation of the decomposition stage of the undiluted and blend systems. Thermal stability is slightly influenced by the position of the maximum decomposition rate temperature of the first derivative thermogravimetric curve (DTG). However, the DTG curve profile remains consistent. The activation energy of undiluted PP was in the range of 162–169 kJ mol−1 determined by the Ozawa method. The stabilized activation energy value for all blends studied above a 0.4 weight-loss fraction is discussed.  相似文献   

15.
两种具有较高热稳定性的胍盐离子液体用于Si3N4/钢摩擦副摩擦学性能的研究,在扫描电子显微镜下观察了磨斑表面形貌,并与烷基咪唑离子液体进行对比。 用X射线光电子能谱仪(XPS)分析了润滑机理。 结果表明,胍盐离子液体对Si3N4/钢摩擦副具有非常好的润滑作用,其承载能力强,摩擦系数小,磨痕浅。 摩擦过程中,Si3N4/钢摩擦副界面发生了复杂的摩擦化学反应并形成了边界润滑膜,起到减摩抗磨的作用。  相似文献   

16.
A novel phosphorus‐containing compound diphenyl‐(1, 2‐dicarboxylethyl)‐phosphine oxide defined as DPDCEPO was synthesized and used as a flame retardant curing agent for epoxy resins (EP). The chemical structure of the prepared DPDCEPO was well characterized by Fourier transform infrared spectroscopy, and 1H, 13C and 31P nuclear magnetic resonance. The DPDCEPO was mixed with curing agent of phthalic anhydride (PA) with various weight ratios into epoxy resins to prepare flame retardant EP thermosets. The flame retardant properties, combustion behavior and thermal analysis of the EP thermosets were respectively investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94), cone calorimeter measurement, dynamic mechanical thermal analysis and thermogravimetric analysis (TGA) tests. The surface morphologies and chemical compositions of the char residues for EP thermosets were respectively investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy (XPS). The water resistant properties of the cured EP were evaluated by putting the samples into distilled water at 70°C for 168 hr. The results revealed that the EP/20 wt% DPDCEPO/80 wt% PA thermosets successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.2%. The cone test results revealed that the incorporation of DPDCEPO effectively reduced the combustion parameters of the epoxy resin thermosets, such as heat release rate and total heat release. The dynamic mechanical thermal analysis test demonstrated that the glass transition temperature (Tg) decreased with the increase of DPDCEPO content. The TGA results indicated that the incorporation of DPDCEPO promoted the decomposition of epoxy resin matrix ahead of time and led to a higher char yield and thermal stability at high temperatures. The surface morphological structures and analysis of the XPS of the char residues of EP thermosets revealed that the introduction of DPDCEPO benefited the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resin material surface during combustion. The mechanical properties and water resistance of the cured epoxy resins were also measured. After water resistance tests, the EP/20 wt% DPDCEPO/80 wt% PA thermosets retained excellent flame retardancy, and the moisture adsorption of the EP thermosets decreased with the increase of DPDCEPO content in EP thermosets because of the existence of the P–C bonds and the rigid aromatic hydrophobic structure in DPDCEPO. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Noble metal particles can be made strongly ferromagnetic or diamagnetic provided that they are synthesized in a sufficiently strong magnetic field. Here we outline two synthesis methods that are fast, reproducible, and allow broad control over particle sizes ranging from nanometers to millimeters. From magnetometry and light spectroscopy, it appears that the cause of this anomalous magnetism is the surface anisotropy in the noble metal particles induced by the applied magnetic field. This work offers an elegant alternative to composite materials of noble metals and magnetic impurities.  相似文献   

18.
石墨烯纸具有优良的导电导热性能,但强度和硬度较低。为了获得良好的综合力学性能以提高石墨烯纸的实用价值,本文提出了制备石墨烯纸-金属复合材料的构想,从实验上初步研究了电沉积法制备石墨烯纸-金属复合材料的可行性,并探究了石墨烯纸与电沉积金属界面结合情况。采用两种常见镀层金属Cu、Cr,在实验室使用电沉积法制备了石墨烯纸-Cu,石墨烯纸-Cr两种复合镀层材料。利用扫描电镜对复合材料的表面形貌和横截面进行了表征,结果显示石墨烯纸-Cr复合材料的界面结合相对紧密。本文首次将二维错配度应用到石墨烯纸与金属镀层界面结合力分析中,通过计算分析,常温下C 的(0001)面与Cr的(110)面的二维错配度为7.26%,晶格匹配度良好. 随温度升高,C-Cr界面错配度值减小,即晶格匹配度增加,另外C-Cr二元相图显示C与Cr发生反应生成的碳化物将进一步增强其界面结合。  相似文献   

19.
For SPME-HPLC, metal wires with better mechanical strength are preferred over the fused silica fibers. In this article, a novel composite polyaniline (CPANI) doped with PEG and polydimethylsiloxane coating (CPANI fiber) was prepared on a stainless steel wire by a three-electrode system: the fiber was used as the work electrode, a calomel electrode and a platinum electrode were used as the reference and the counter electrodes, respectively. To evaluate the new CPANI coating, the coating was used to extract three kinds of phenols (bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol) in water samples by direct-SPME mode and then desorbed in commercial SPME-HPLC interface to separation. The extraction procedure was also optimized. Five real water samples were investigated. Good recoveries were gained when environmental samples were analyzed.  相似文献   

20.

Flame retardant-modified sepiolite nanofiber (PSPHD-SEP) was fabricated through chemical grafting by introducing intumescent flame retardant oligomer (PSPHD) onto the surface of sepiolite fiber. Various sepiolite/low-density polyethylene (SEP/LDPE) composites have been prepared successfully via melt blending. The dispersion of various SEPs in LDPE matrix was observed by scanning electron microscope and transmission electron microscope. The thermal degradation behaviors of various SEP/LDPE composites with 3 mass% acid-modified sepiolite fiber (a-SEP) or PSPHD-SEP have been investigated employing thermogravimetric analysis/derivative thermogravimetry. The thermal degradation kinetics of neat LDPE, a-SEP/LDPE and PSPHD-SEP/LDPE systems was comparatively analyzed by means of Friedman and Flynn–Wall–Ozawa methods to further comprehend the effect of a-SEP and PSPHD-SEP on the thermal stability of LDPE. Due to the addition of PSPHD-SEP, the limiting oxygen index value of PSPHD-SEP/LDPE composite can reach 21.3%, and the UL-94V-2 rating is obtained. The cone calorimetry (CONE) tests showed that a reduced peak heat release rate can be achieved for PSPHD-SEP/LDPE composite accompanying with gas-phase fire retardant action.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号