首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Graphene‐polymer nanocomposites have significant potential in many applications such as photovoltaic devices, fuel cells, and sensors. Functionalization of graphene is an essential step in the synthesis of uniformly distributed graphene‐polymer nanocomposites, but often results in structural defects in the graphitic sp2 carbon framework. To address this issue, we synthesized graphene oxide (GO) by oxidative exfoliation of graphite and then reduced it into graphene via self‐polymerization of dopamine (DA). The simultaneous reduction of GO into graphene, and polymerization and coating of polydopamine (PDA) on the reduced graphene oxide (RGO) surface were confirmed with XRD, UV–Vis, XPS, Raman, TGA, and FTIR. The degree of reduction of GO increased with increasing DA/GO ratio from 1/4 to 4/1 and/or with increasing temperature from room temperature to 60 °C. A RAFT agent, 2‐(dodecylthiocarbonothioylthio)?2‐methylpropionic acid, was linked onto the surface of the PDA/RGO, with a higher equivalence of RAFT agent in the reaction leading to a higher concentration of RAFT sites on the surface. Graphene‐poly(methyl methacrylate), graphene‐poly(tert‐butyl acrylate), and graphene‐poly(N‐isopropylacrylamide) nanocomposites were synthesized via RAFT polymerization, showing their characteristic solubility in several different solvents. This novel synthetic route was found facile and can be readily used for the rational design of graphene‐polymer nanocomposites, promoting their applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3941–3949  相似文献   

2.
通过将吡咯单体在低温下与氧化石墨烯进行原位聚合,获得聚吡咯/石墨烯(Ppy/CRGO)复合材料.采用场发射电子显微镜(FESEM)、红外(FT-IR)和热重分析(TGA)对复合物的表面形貌、结构进行表征.FESEM结果表明,通过控制氧化石墨烯(GO)和吡咯单体的质量比例,可以对复合物的层状和厚度进行调控.FT-IR和TGA结果表明,聚吡咯(Ppy)是通过化学键合的方式与氧化石墨烯复合在一起.通过机械冷压法将粉末状Ppy/CRGO复合物压成圆片电极,并探讨了石墨烯和聚吡咯复合比例、反应时间、烘干温度和孔隙率等因素对Ppy/CRGO复合物电极的电学和电化学性能的影响.结果表明,Ppy与CRGO质量比为10∶1所制得的Ppy/CRGO复合物的电容量为421 F·g-1,通过在电极中引入孔隙,电容量能进一步提升为509 F·g-1.  相似文献   

3.
This report describes a new route to covalently bonded polymer–graphene nanocomposites and the subsequent enhancement in thermal and mechanical properties of the resultant nanocomposites. At first, the graphite is oxidized by the modified Hummers method followed by functionalization with Octadecylamine (ODA). The ODA functionalized graphite oxides are reacted with methacryloyl chloride to incorporate polymerizable ? C?C? functionality at the nanographene platelet surfaces, which were subsequently employed in in situ polymerization of methylmethacrylate to obtain covalently bonded poly(methyl methacrylate) (PMMA)–graphene nanocomposites. The obtained nanocomposites show significant enhancement in thermal and mechanical properties compared with neat PMMA. Thus, even with 0.5 wt % graphene nanosheets, the Tg increased from 119 °C for neat PMMA to 131 °C for PMMA–graphene nanocomposite, and the respective storage modulus increased from 1.29 to 2 GPa. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4262–4267, 2010  相似文献   

4.
Graphene nanosheets offer intriguing electronic, thermal and mechanical properties and are expected to find a variety of applications in high‐performance nanocomposite materials. The great challenge of exfoliating and dispersing pristine graphite or graphene sheets in various solvents or matrices can be achieved by facilely and properly chemical functionalization of the carbon nanosheets. Here we reported an efficient way to functionalize graphene sheets with presynthesized polymer via a combination of atom transfer nitroxide radical coupling chemistry with the grafting‐onto strategy, which enable us to functionalize graphene sheets with well‐defined polymer synthesized via living radical polymerization. A radical scavenger species, 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO), was firstly anchored onto ? COOH groups on graphene oxide (GO) to afford TEMPO‐functionalized graphene sheets (GS‐TEMPO), meanwhile, the GO sheets were thermally reduced. Next, GS‐TEMPO reacted with Br‐terminated well‐defined poly(N‐isopropylacrylamide) (PNIPAM) homopolymer, which was presynthesized by SET‐LRP, in the presence of CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine to form PNIPAM‐graphene sheets (GS‐PNIPAM) nanocomposite in which the polymers were covalently linked onto the graphene via the alkoxyamine conjunction points. The PNIPAM‐modified graphene sheets are easily dispersible in organic solvents and water, and a temperature‐induced phase transition was founded in the water suspension of GS‐PNIPAM. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
The new sulfonated graphene oxide (S-GO) was prepared and firstly used as effective materials for the synthesis of polystyrene/graphene nanocomposites via Pickering emulsion polymerization. The functionalized, chemically modified GO nanosheets were obtained via facile covalent functionalization with a reactive surfactant, sulfanilic acid. It was found that Pickering emulsion could be formed by simple self-assembly method using the S-GO as a stabilizer (just need 1 wt% relative to the oil phase), which could be adsorbed at the oil–water interface to stabilize the emulsion effectively. After the Pickering emulsion polymerization of styrene, the polystyrene/S-GO nanocomposites were prepared successfully. It is noteworthy that the S-GO not only could be used as a highly effective surfactant for styrene monomers but also could be homogeneously dispersed and incorporated into the polymeric matrix.  相似文献   

6.
A method for the double functionalization of graphene oxide (GO) under mild alkaline conditions has been developed. Two functional groups were covalently linked to GO in two steps: the first group was attached by an epoxide ring‐opening reaction and the second, bearing an amine function, was covalently conjugated to benzoquinone attached to the GO. The doubly functionalized GO was characterized by several techniques, confirming the sequential covalent modification of the GO surface with two different functional groups. This method is straightforward and the reaction conditions are mild, allowing preservation of the structure and properties of GO. This strategy could be exploited to prepare multifunctional GO conjugates with potential applications in many fields ranging from materials science to biomedicine.  相似文献   

7.
We have designed and synthesis a new compound of zinc‐porphyrin bearing four pyrene groups (ZnP‐t‐P(py)4) and prepared a new hybrid materials of ZnP‐t‐P(py)4 with graphene oxide (GO) via non‐covalent interactions. The ZnP‐t‐P(py)4, along with four pendant pyrene entities ZnP‐t‐P(py)4, stacking on the (GO) surface due to π‐ π interactions, has been revealed by AFM measurements. FTIR, UV‐vis absorption confirm the non‐covalent functionalization of the GO. Raman spectral measurements revealed the electronic structure of the GO to be intact upon hybrid formation. In this donor‐acceptor nanohybrid, the fluorescence of photoexcited ZnP‐t‐P(py)4 is effectively quenched by a possible electron‐transfer process. The fluorescence and photoelectrical response measurements also showed that this hybrid may act as an efficient photoelectric conversion material for optoelectronic applications.  相似文献   

8.
Facile and scalable fabrication methods are attractive to prepare materials for diverse applications. Herein, a method is presented to prepare cross‐linked polymeric nanoparticles with graphene oxide (GO) nanosheets covalently attached to the surface. Alkene‐modified GO serves as a surfactant in a miniemulsion polymerization, and the alkene functionalities of GO exposed to the oil‐phase are incorporated into the polymer particle through thiol‐ene reactions, leaving the unreacted alkene functional groups of the other face of GO available for further functionalization. The surface of GO‐armored polymer particles is then modified with a small molecule fluorophore or carboxylic acid functional groups that bind to Fe2O3 and TiO2 nanoparticles. This methodology provides a facile route to preparing complex hybrid composite materials.

  相似文献   


9.
In this work, an octadecylamine‐modified graphene oxide (ODA‐GO)‐MgCl‐supported Ziegler–Natta catalyst was synthesized by reacting ODA‐GO with a Grignard reagent, followed by anchoring TiCl4 to the structure. The effect of the ODA‐GO on the catalyst morphology and ethylene polymerization behavior was examined. The resultant polyethylene (PE)/ODA‐GO nanocomposites directly mirrored the catalyst morphology by forming a layered morphology, and the ODA‐GO fillers were well dispersed in the PE matrix and showed strong interfacial adhesion with it. The resultant PE/ODA‐GO nanocomposites exhibited better thermal stability and mechanical properties than neat PE, even with a small amount of ODA‐GO added. Thus, this work provides a facile approach to the production of high‐performance PE. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 855–860  相似文献   

10.
Polymer brushes decorated reduced GO (rGO) with advanced applications have been prepared by bioinspired polydopamine (PDA) chemistry integrated with activators regenerated by electron transfer atom transfer radical polymerization (ARGET‐ATRP) technique. First, rGO/PDA was obtained by the process for graphene oxide (GO) coated with a homogeneous bio‐adhesive PDA layer. Then the initiator 2‐bromoisobutyryl bromide (BIBB) was immobilized on the surface of PDA functionalized rGO. Finally, rGO/PDA‐Br was polymerized with N, N‐diethylaminoethyl methacrylate (DEAEMA) and glycidyl methacrylate (GMA) to obtain rGO/PDA‐g‐polymer brushes by ARGET‐ATRP process. The prepared rGO/PDA‐g‐PGMA brush would be subjected to further functionalization with ethylenediamine (EDA), which would impart the obtained products (rGO/PDA‐g‐PGMA‐NH2) with good adsorption ability toward cationic dyes. The chemical structures and morphologies of the functionalized GO products have been characterized in detail by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, thermal gravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscope(TEM), and atomic force microscopy (AFM). The distinctive pH‐responsive character of rGO/PDA‐g‐PDEAEMA and adsorption ability of rGO/PDA‐g‐PGMA‐NH2 for cationic dyes have been explored by UV–vis spectrophotometer. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 689–698  相似文献   

11.
Graphene nanosheets offer intriguing electronic, thermal, and mechanical properties and are expected to find a variety of applications in high‐performance nanocomposite materials. Dispersal of graphene nanosheets in polymer hosts and precise interface control are challenging due to their strong interlayer cohesive energy and surface inertia. Here, an efficient strategy is presented for growing polymers directly from the surface of reduced graphene oxide (GO). This method involves the covalent attachment of Br‐containing initiating groups onto the surface of hydrazine hydrate reduced GO via a diazonium addition and the succeeding linking of poly(tert‐butyl methacrylate) (PtBMA) chains (71.7 wt % grafting efficiency) via surface‐initiated single‐electron‐transfer living radical polymerization (SET‐LRP) to graphene nanosheets. The resulting materials were characterized by using a range of testing techniques and it was proved that polymer chains were successfully introduced to the surface of exfoliated graphene sheets. After grafting with PtBMA, the modified graphene sheets still maintained the separated single layers, and the dispersibility was improved significantly. The method is believed to offer possibilities for optimizing the processing properties and interface structure of graphene–polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

12.
With the rapid development of electronic industry, thermal management has become a critical issue that severely restricts the application of portable devices. In this work, we fabricate a flexible and free‐standing graphitized‐graphene/polyimide (I‐g‐GO/PI) film via an in‐situ “molecular welding” strategy. With the help of in‐situ polymerization, PI can be well‐dispersed with GO and serves as a solder to enlarge the grain size of GO, resulting in an enhanced thermal conductivity of the film. The 7 wt % addition of PI into GO (I‐g‐GO/PI‐7%) leads to an in‐plane thermal conductivity as high as 1269.700 ± 1.498 W/m/K, which is 81.8% higher than that of the pristine graphene and also superior to that fabricated via solution blending method by 58.3%. Simultaneously, the hybrid film exhibits an excellent flexibility and survives from a 2000 cycles bending test. The large‐area hybrid film prepared by such an in‐situ “molecular welding” method provides a promising way to fabricate graphene‐based film for highly efficient thermal management. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1215–1223  相似文献   

13.
Poly (N-vinylcarbazole)-polypyrrole/graphene oxide (PNVC-Ppy/GO) nanocomposites have been successfully prepared by one-step chemical oxidative polymerization using ferric chloride hexahydrate in the presence of dodecyl benzene sulfonic acid. The composite formation, morphology and the crystallinity of the composite have been characterized by FTIR spectroscopy, FESEM, and XRD, respectively. The incorporation of graphene oxide into the PNVC-Ppy matrix induces interaction between graphene oxide and PNVC-Ppy via hydrogen bonding and π–π* stacking. This π–π* stacking between the GO layers and PNVC-Ppy produces longer conjugation length leading to a higher solubility in organic solvents and enhanced electron mobility. The information of conjugation chain length and charge transfer capacity at the interface of the composite has been obtained from the Raman spectroscopy and photolumincience spectroscopy. The improved thermal stability and electrical d.c. conductivity (0.123?S/cm) of the resulting PNVC-Ppy/GO composite compared to the PNVC–Ppy copolymer (0.08?S/cm) is attributed to the incorporation of graphene oxide in the composite.  相似文献   

14.
A mild and efficient strategy is presented for growing thermo‐sensitive polymers directly from the surface of exfoliated graphene oxide (GO). This method involves the covalent attachment of Br‐containing initiating groups onto the surface of GO sheets followed by in situ growing poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) via single‐electron‐transfer living radical polymerization (SET‐LRP). Considering the lack of reactive functional groups on the surface of GO, exfoliated GO sheets were subjected to an epoxide ring opening reaction with tris(hydroxymethyl) aminomethane (TRIS) at room temperature. The initiating groups were grafted onto TRIS‐GO sheets by treating hydroxyls with 2‐bromo‐2‐methylpropionyl bromide at room temperature. PPEGEEMA chains were synthesized by in situ SET‐LRP using CuBr/Me6TREN as catalytic system at 40 °C in H2O/THF. The resulting materials were characterized using a range of testing techniques and it was proved that polymer chains were successfully introduced to the surface of GO sheets. After grafting with PPEGEEMA, the modified GO sheets still maintained the separated single layers and the dispersibility was significantly improved. This TRIS‐GO‐PPEGEEMA hybrid material shows reversible self‐assembly and deassembly in water by switching temperature at about 34 °C. Such smart graphene‐based materials promise important potential applications in thermally responsive nanodevices and microfluidic switches. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
In this study, we report a mild and efficient strategy for growing thermosensitive polymers directly from the surface of exfoliated graphene oxide (GO). Exfoliated GO sheets were sequentially subject to the epoxide ring‐opening reaction with tris(hydroxymethyl) aminomethane (TRIS) to increase the amount of reactive sites, the esterification with 2‐bromo‐2‐methylpropionyl bromide to introduce the Br‐containing initiating groups, and the surface‐initiated single electron transfer–living radical polymerization of N‐isopropylacrylamide (NIPAM) to tune the molecular weights of grafted polymers. All these reactions were performed at ambient temperature without losing any other oxygen‐containing functionality on GO. The resulting TRIS‐GO‐PNIPAM nanocomposites still maintain the separated single layers in dispersion, and the dispersibilities in organic solvents are significantly improved. Meanwhile, the aqueous dispersion of TRIS‐GO‐PNIPAM shows reversible temperature switching self‐assembly and disassembly behavior at about 40°C. Such smart graphene‐based hybrid materials are promising for applications in nanoelectronics, sensors, and microfluidic switches. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
An effective technique of using click coupled graphene to obtain high‐performance polymer nanocomposites is presented. Poly(ε‐caprolactone) (PCL)‐click coupled graphene sheet (GS) reinforcing fillers are synthesized by the covalent functionalization of graphene oxide with PCL, and subsequently the PCL‐GS as a reinforcing filler was incorporated into a shape memory polyurethane matrix by solution casting. The PCL‐click coupled GS has shown excellent interaction with the polyurethane matrix, and as a consequence, the mechanical properties, thermal stability, thermal conductivity, and thermo‐responsive shape memory properties of the resulting nanocomposite films could be enhanced remarkably. In particular, for polyurethane nanocomposites incorporated with 2% PCL‐GS, the breaking stress, Young's modulus, elongation‐at‐break, and thermal stability have been improved by 109%, 158%, 28%, and 71 °C, respectively. This click coupling protocol offers the possibility to fully combine the extraordinary performance of GSs with the properties of polyurethane. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

17.
Functionalized nanocomposites based on various type of graphene nanomaterials including graphene, graphene oxides (GOs), and doped graphene (oxides) are widely used as materials for various sensors that can display high sensitivity, selectivity and stability. This review with 347 references summarizes advances in the preparation and functionalization of graphene nanocomposites for the application of electrochemical sensors and biosensors. Following a general introduction into the field, the article is divided into subsections on (a) the synthesis and functionalization of nanocomposites (made from graphene, various kinds of GOs, heteroatom-doped GOs), (b) on methods for functionalization of composites (with other carbon nanomaterials, metal nanoparticles, metal oxide and metal sulfide nanoparticles), (c) on functionalization with inorganic materials including polyoxometalates, hexacyanoferrates, minerals), (d) on functionalization with organic materials such as amino acids, surfactants, organic dyes, ionic liquids, macrocycles (including cyclodextrins, crown ethers and calixarenes), and (e) on functionalization with organometallics and with various other organic compounds, (f) on functionalizations with polymers such as conventional polymers, polyelectrolytes, conducting polymers, molecularly imprinted polymers, (g) on functionalization with biomolecules including proteins and nucleic acids. Other subsections cover flexible graphene and GO based nanocomposites and 3D composites. Application of graphene and GO nanocomposites are then covered in a in large section that comprises electrochemical sensors and biosensors (based on voltammetry, amperometry, potentiometry, impedimetry, electrochemiluminescence, photoelectrochemistry, field effect transistors, electrochemical immunosensors) with specific subsections on gas sensors, enzymatic biosensors and gene sensors. A concluding section covers current challenges and perspectives of graphene and GO based (bio)sensing.
Graphical abstract Illustration of electroanalytical applications of graphene functionalized with various materials, including carbon nanotube (CNT), fullerene (C60), nanodiamond (ND), nanoparticle (NP), polyoxometalate (POM), metal hexacyanoferrate (MHCF), metalphthalocyanine (MPc), cyclodextrin (CD), poly(sodium 4-styrenesulfonate) (PSS), chitosan (CHIT), DNA and enzyme.
  相似文献   

18.
The present endeavor focuses on the unusual interactions between polyaniline and graphene oxide (PANi–GO) which radically affects the properties of nanocomposites as it is an emerging material for many potential applications. A series of nanocomposites have been synthesized by varying the weight percentage of highly nonconducting GO with respect to aniline which exhibit superior properties in terms of shelf life, processability and conductivity due to the synergistic effect of GO and PANi. A comparison of the resistances of samples reveal that though as‐synthesized GO is insulating (80 MΩ), when added to PANi (283 kΩ) in small amounts yields conducting composites (50–280 Ω). Up to 5 weight % concentration, GO renders conductivity to the composite probably by increasing the doping level of PANi. Nonetheless, no further increase in conductivity observed on addition of more than 5 wt% GO in the composite has dictated us to unravel the structure property relationship between PANi and GO, where GO facilitates the formation of partially reduced phase of PANi, thereby restricting the electronic transport. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3778–3786  相似文献   

19.
Graphene nanosheets possess a range of extraordinary physical and electrical properties with enormous potential for applications in microelectronics, photonic devices, and nanocomposite materials. However, single graphene platelets tend to undergo agglomeration due to strong π–π and Van der Waals interactions, which significantly compromises the final material properties. One of the strategies to overcome this problem, and to increase graphene compatibility with a receiving polymer host matrix, is to modify graphene (or graphene oxide (GO)) with polymer brushes. The research to date can be grouped into approaches involving grafting‐from and grafting‐to techniques, and further into approaches relying on covalent or noncovalent attachment of polymer chains to the suitably modified graphene/GO. The present Highlight article describes research efforts to date in this area, focusing on the use of controlled/living radical polymerization techniques. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
The butyl methacrylate radical polymerization kinetics in the presence of graphene oxide nanoadditive is studied both experimentally and theoretically. The experimental study includes the formation of graphite oxide from the oxidation of graphite and its subsequent transformation to graphene oxide (GO) after ultrasonication and in situ polymerization. Monomer conversion versus time was monitored gravimetrically at various reaction temperatures and initial GO fractions. Formation of GO was verified by X‐ray diffraction spectra and the number and weight average molecular weights of the final polymer were obtained from GPC measurements. A detailed theoretical kinetic model was further developed. The model predictions were found to be in satisfactory agreement with the experimental data. The presence of GO was found to result in reduced initiator efficiency verified theoretically and explained through side reactions of primary radicals. Finally, nanocomposites showed enhanced thermal stability compared to neat PBMA. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1433–1441  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号