首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
蒋鑫萍  程舸  王韶  刘晓梅  于雷  石磊 《应用化学》2010,27(4):462-465
采用酸碱滴定法测定壳聚糖和壳寡糖脱乙酰度分别为90.9%和90.1%,用IR方法表征了壳糖中乙酰基和氨基。 MALDI-FT-MS进一步给出了经葡聚糖凝胶柱纯化后壳寡糖脱乙酰度和聚合度的信息。 通过壳聚糖吸附性能的研究发现,壳聚糖对放射性核素铀具有较强的吸附能力,吸附率达96%以上,即使在大量Cu2+存在情况下,也可高效吸附放射性核素铀,说明壳聚糖有望成为一种新型的放射性核素吸附去污材料。  相似文献   

2.
The hemicellulose xylan, which has immunomodulatory effects, has been combined with chitosan to form a composite hydrogel to improve the healing of bone fractures. This thermally responsive and injectable hydrogel, which is liquid at room temperature and gels at physiological temperature, improves the response of animal host tissue compared with similar pure chitosan hydrogels in tissue engineering models. The composite hydrogel was placed in a subcutaneous model where the composite hydrogel is replaced by host tissue within 1 week, much earlier than chitosan hydrogels. A tibia fracture model in mice showed that the composite encourages major remodeling of the fracture callus in less than 4 weeks. A non‐union fracture model in rat femurs was used to demonstrate that the composite hydrogel allows bone regeneration and healing of defects that with no treatment are unhealed after 6 weeks. These results suggest that the xylan/chitosan composite hydrogel is a suitable bone graft substitute able to aid in the repair of large bone defects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Chitosan gel beads were prepared using an in‐liquid curing method by the ionotropic crosslinking with sodium tripolyphosphate. Crosslinking characteristics of the chitosan‐TPP beads were improved by the modification of in‐liquid curing mechanism of the beads in TPP solution. Chitosan gel beads cured in pH value lower than 6 were really ionic‐crosslinking controlled, whereas chitosan gel beads cured in pH values higher than 7 were coacervation‐phase inversion controlled accompanied with slightly ionic‐crosslinking dependence. According to the result, significantly increasing the ionic‐crosslinking density of chitosan beads could be achieved by transferring the pH value of the curing agent, TPP, from basic to acidic. The swelling behavior of various chitosan beads in acid appeared to depend on the ionic‐crosslinking density of the chitosan‐TPP beads that were deeply affected by the curing mechanism of the beads. The mechanism of chitosan‐TPP beads swollen in weak acid was chain‐relaxation controlled, while the mechanism of chitosan‐TPP beads swollen in strong acid seem to be not only chain‐relaxation but also chain‐scission controlled. Chitosan‐TPP beads prepared in acidic TPP solution decreased the chain‐scission ability due to the increase of ionic crosslinking density of the beads. By the transition of curing mechanism, the swelling degree of chitosan‐TPP beads was depressed, and the disintegration of chitosan‐TPP beads would not occur in strong acid. The mechanism of ionic‐crosslinking reaction of chitosan beads could be investigated by an unreacted core model, and the curing mechanism of the chitosan beads is mainly diffusion controlled when higher than 5% of chitosan was employed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1551–1564, 1999  相似文献   

4.
Abstract

Chitosan has been investigated as a non‐viral vector because it has several advantages such as biocompatibility, biodegradability, and low toxicity. However, low specificity and low transfection efficiency of chitosan as a DNA carrier need to be overcome prior to clinical trial. In this review paper, chemical modification of chitosan was tried in order to enhance cell specificity and transfection efficiency. Also, chemical modification of chitosan was performed to increase stability of chitosan/DNA complexes.  相似文献   

5.
Chitosan is a biodegradable natural polymer with great potential for pharmaceutical applications due to its biocompatibility, high charge density, nontoxicity, and mucoadhesion properties. Processing techniques for the preparation of chitosan microspheres have been extensively developed since the 1980s. The present paper describes for the first time a fast and one‐step process for the preparation of stable chitosan microspheres by a simple sonochemical method. The microspheres were characterized by their particle size, surface morphology, stability, and drug‐entrapment efficiency. The average size of the microspheres was found to be around 1 μm with a narrow size distribution, which enabled them to be used for in vivo applications. The encapsulation of different dyes into these microspheres was readily achieved with more than 75 % efficacy by dissolving them into the organic phase before sonication. The chitosan microspheres demonstrated excellent stability toward acidic and basic conditions ranging from pH 4 to 9, thereby indicating their implementation as possible therapeutic and diagnostic agents. The stability of these microspheres appears to be contributed from intermolecular imine cross‐linking in addition to other noncovalent interactions. The ability of the surface‐exposed amino groups of chitosan microspheres to undergo chemical conjugation with potential drugs and/or targeting vectors was determined by their reaction with fluorescein isothiocyanate (FITC) and fluorescamine followed by confocal microscopy.  相似文献   

6.
Significant attention has been focused on bone tumor therapy recently. At present, the treatment in clinic typically requires surgical intervention. However, a few tumor cells remain around bone defects after surgery and subsequently proliferate within several days. Thus, fabrication of biomaterials with dual functions of tumor therapy and bone regeneration is significant. Herein, the injectable hydrogel containing cisplatin (DDP) and polydopamine‐decorated nano‐hydroxyapatite is prepared via Schiff base reaction between the aldehyde groups on oxidized sodium alginate and amino groups on chitosan. The hydrogel exhibits sustained release properties for DDP due to the immobilization of DDP via abundant functional groups on polydopamine (PDA). Additionally, given the intense absorption of PDA in the near‐infrared region, the hydrogel exhibits excellent photothermal effects when exposed to the NIR laser (808 nm). Based on the properties, the hydrogel effectively ablates tumor cells (4T1 cells) in vitro and suppresses tumor growth in vivo. Furthermore, the hydrogel promotes the adhesion and proliferation of bone mesenchymal stem cells in vitro due to the abundant functional groups on PDA and further induces bone regeneration in vivo. Therefore, the study extends research on novel biomaterials with dual functions of tumor therapy and bone regeneration.  相似文献   

7.
Chitosan based reasonably stable membranes were prepared as polymeric electrolyte and separator for enzymatic fuel cell applications. Glucose oxidase (GOx) bioanode centered biofuel cell with the developed chitosan membranes performed much better in stability with high current densities than that of the biofuel cell utilizing a 125 μ‐thick perfluorosulfonic acid‐type membrane (i. e. Nafion® 115). Proposed chitosan membrane structural stability was enhanced by employing cellulosic support materials and chemical crosslinking. The effects of pH, buffer type, buffer concentration, temperature on the manufactured chitosan membranes along with the biofuel cell system were investigated. The biofuel cell operation parameters were optimized for the current density and stability aspects and more than 3 mA cm?2 current density was acquired from the cell at optimum conditions. Operational half‐life of the chitosan membrane was found as higher than the half‐life of the GOx immobilized bioanode. Therefore, this result indicates that chitosan membrane structural stability was not a limiting issue for the biofuel cell lifespan.  相似文献   

8.
《Electroanalysis》2017,29(4):1081-1087
Neodymium (III) oxide (NdOx) was dispersed in chitosan dissolution and deposited on a glassy carbon electrode (chitosan‐NdOx/GCE). The surface properties of the chitosan‐NdOx/GCE were evaluated with FeCN6−3 solution using cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode was used in the determination of individual dopamine (DP) and ascorbic acid (AA) with square wave adsorptive voltammetry. Under optimal parameters (pH 4.0; accumulation time; tACC 60s and accumulation potential; EACC 0.10 V) for DP and (pH 3,0; tACC 60s and; EACC −0.20 V) for AA, anodic peak currents were proportional to the concentration of DP and AA between 0.90 and 17.0 μmolL−1, with detection limit of 0.079 μmolL−1 for DP and 0.12 μmolL−1 for AA. The sensor was used in the determination of DP and AA in human urine samples and vitamin C tablets with consistent results. The new sensor is easy to develop. In addition, the sensitivity in particular for AA was improved compared with previous work.  相似文献   

9.
Chitosan is a natural based polymer obtained by alkaline deacetylation of chitin, exhibiting excellent properties such as non‐toxicity, biocompatibility and biodegradability. N‐Methylenephenyl phosphonic chitosan (NMPPC) is synthesized from chitosan by reacting with phenyl phosphonic acid using formaldehyde. The NMPPC was characterized by FTIR, 31P‐NMR, X‐ray diffraction, scanning electron microscopy, thermogravimeteric analysis and solubility studies. A significant decrease of molecular weight was observed in the NMPPC. The TGA studies suggested that NMPPC has less thermal stability than chitosan. The X‐ray diffraction analysis showed that NMPPC was amorphous in nature. The solubility property of the polymer was improved after the incorporation of a phenyl phosphonic group.  相似文献   

10.
Therapeutic contact lenses have attracted significant attention during the last decades. In this study, we used chitosan‐conjugated poly(2‐hydroxyethyl methacrylate) (PHEMA) for contact lens application. We aimed to increase affinity of anionic drugs, which are used in treatment of eye diseases. In this regard, we evaluated delivery of the small molecule anionic drug, ascorbic acid from the chitosan‐conjugated PHEMA. Chitosan immobilization improves drug loading efficiency and induces sustained release of ascorbic acid. The chitosan modified hydrogel also reduces the biofouling of tear fluid components. Our results showed that surface modification by chitosan inhibits protein and bacterial deposition on the contact lens. Protein absorption analysis revealed that neat PHEMA adsorbed tear proteins at a density of 28.4 ± 4.4 μg/cm2, whereas the chitosan‐conjugated hydrogel adsorbed tear proteins at a density of 18.5 ± 1.8 μg/cm2. Moreover, the neat PHEMA bacterial adhesion had a mean CFU value of 273 ± 27. However, a significant decrease in the number of bacterial colonies was observed in the chitosan group with a CFU value of 9 ± 6.  相似文献   

11.
Bacteria‐caused infection remains an issue in the treatment of bone defects by means of Mg‐Zn‐Ca alloy implants. This study aimed to improve the antibacterial properties of an Mg‐Zn‐Ca alloy by coating with chitosan‐based nanofibers with incorporated silver sulfadiazine (AgSD) and multiwall carbon nanotubes (MWCNTs). AgSD and MWCNTs were prepared at a weight ratio of 1:1 and then added to chitosan at varying concentrations (ie, 0, 0.25, 0.5, and 1.5 wt.%) to form composites. The obtained composites were ejected in nanofiber form using an electrospinning technique and coated on the surface of an Mg‐Zn‐Ca alloy to improve its antibacterial properties. A microstructural examination by scanning electron microscopy (SEM) revealed the diameter of chitosan nanofiber ejected increased with the concentration of AgSD‐MWCNTs. The incorporation of AgSD‐MWCNTs into the chitosan nanofibers was confirmed by Fourier transform infrared spectroscopy (FTIR). Examination of the antibacterial activity shows that chitosan nanofibers with AgSD‐MWCNTs can significantly inhibit the growth and infiltration of Escherichia coli and Staphylococcus aureus. Biocompatibility assay and cell morphology observations demonstrate that AgSD‐MWCNTs incorporated into nanofibers are cytocompatible. Taken together, the results of this study demonstrate the potential application of electrospun chitosan with AgSD‐MWCNTs as an antibacterial coating on Mg‐Zn‐Ca alloy implants for bone treatment.  相似文献   

12.
13.
应用等离子体发射光谱仪测定了去卵巢水平下骨基质明胶修复大鼠颅骨骨缺损新生骨痂的矿物质元素含量。将28只雌性SD大鼠随机分为2组。去卵巢组切除双侧卵巢,伪手术对照组保留卵巢。术后4周在颅骨上制备骨缺损并同期植入骨基质明胶。8周后,测定新生骨痂的矿物质元素含量。结果显示,去卵巢大鼠新生骨痂的S、Ca、P、Zn、Fe和Cu含量较伪手术组显著降低。实验表明雌激素水平影响骨基质明胶修复骨缺损骨痂的矿物质元素含量。  相似文献   

14.
P Audy  A Asselin 《Electrophoresis》1992,13(5):334-337
Enzymatic hydrolysis of commercial crustacean chitosan by barley chitosanases was analyzed by subjecting chitosan to electrophoresis in a 10% w/v polyacrylamide slab gel in the presence of 7 M urea and 5.5% v/v acetic acid. Chitosan migrated as a polycation. Chitosan was stained with Coomassie Brilliant Blue R-250 or visualized by ultraviolet transillumination after staining with Calcofluor White M2R. Some chitosan molecules were retarded by gel electrophoresis while small chitosan molecules migrated at the bottom of a 10% w/v polyacrylamide gel. Such analysis revealed that 96 h were necessary to convert all chitosan to oligosaccharides under our assay conditions. Chitosan oligosaccharides generated by enzymatic or chemical hydrolysis were further analyzed by electrophoresis in a 33% w/v polyacrylamide gel containing urea and acetic acid. Coomassie Brilliant Blue R-250 was found to be better than Calcofluor White M2R for staining chitosan oligosaccharides. Chitosan oligomers of four residues (tetramers) or more were easily resolved in such a polyacrylamide gel system. To our knowledge, this is the first report of a gel electrophoretic separation of chitosan and its oligosaccharides.  相似文献   

15.
Functionalizing polymer scaffolds with nanodiamond particles (nDPs) has pronounced effect on the surface properties, such as improved wettability, an increased active area and binding sites for cellular attachment and adhesion, and increased ability to immobilize biomolecules by physical adsorption. This study aims to evaluate the effect of poly(l ‐lactide‐co‐ε‐caprolactone) (poly(LLA‐co‐CL)) scaffolds, functionalized with nDPs, on bone regeneration in a rat calvarial critical size defect. Poly(LLA‐co‐CL) scaffolds functionalized with nDPs are also compared with pristine scaffolds with reference to albumin adsorption and seeding efficiency of bone marrow stromal cells (BMSCs). Compared with pristine scaffolds, the experimental scaffolds exhibit a reduction in albumin adsorption and a significant increase in the seeding efficiency of BMSCs (p = 0.027). In the calvarial defects implanted with BMSC‐seeded poly(LLA‐co‐CL)/nDPs scaffolds, live imaging at 12 weeks discloses a significant increase in osteogenic metabolic activity (p = 0.016). Microcomputed tomography, confirmed by histological data, reveals a substantial increase in bone volume (p = 0.021). The results show that compared with conventional poly(LLA‐co‐CL) scaffolds those functionalized with nDPs promote osteogenic metabolic activity and mineralization capacity. It is concluded that poly(LLA‐co‐CL) composite matrices functionalized with nDPs enhance osteoconductivity and therefore warrant further study as potential scaffolding material for bone tissue engineering.

  相似文献   


16.
It is important for gene carrier to transport DNA into target cells. Although viral vectors are very efficient gene-transfer vehicles, significant drawbacks limit their applications. Chitosan (CS) has been researched widely as a non-viral vector. However, the low cell specificity and low transfection efficiency of chitosan need to be overcome. In order to conquer the drawback of chitosan, the present paper is concerned with the synthesis of novel galactosylated chitosan (GC) through etherization of chitosan and galactose in THF using BF3·OEt2 as promoter. The final product was characterized and confirmed by FT-IR and 1H NMR. The degree of O-substitution (DS) of chitosan by galactose was measured to be 10.38% using anthrone-sulfuric acid colorimetric method. The mean particle diameter and average zeta potential of the GC/DNA complex were 350 nm and +22.1 mV, respectively. The GC/DNA nanoparticle was tested to transfect HEK293 cells, and the viability of HEK293 cells was not affected by the GC/DNA nanoparticle compared to that of the control.  相似文献   

17.
Core–shell structured PEO‐chitosan nanofibers have been produced from electric field inducing phase separation. Chitosan, a positive charged polymer, was dissolved in 50 wt % aqueous acetic acid and the amino group on polycation would protonize, which would endow chitosan electrical properties. Chitosan molecules would move along the direction of the electric field under the electrostatic force and formed the shell layer of nanofibers. Preparation process of core – shell structure is quite simple and efficient without any post‐treatment. The core–shell structure and existence of chitosan on the shell layer were confirmed before and after post‐treatment by TEM and further supported by SEM, FTIR, XRD, DSC, and XPS studies. Blending ratio of PEO and chitosan, molecular weight of chitosan for the mobility of chitosan are thought to be the key influence factors on formation of core–shell structure. Drug release studies show that the prepared core–shell structure nanofibers has a potential application in the biomedical fields involving drug delivery. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2298–2311  相似文献   

18.
壳多糖抑制细菌生长的构效关系   总被引:6,自引:0,他引:6  
运用化学结构已清楚, 分属4大系列的29种壳多糖, 以4种不同类型的细菌(革兰氏阳性菌Ecoli K1、革兰氏阴性菌Bacillus cereus、Bacillus megaterium和Staphlylococcu aureus)为研究对象, 进行了壳多糖抑菌能力构效关系的研究. 在实验中采用96孔平板, 用计算机\|吸光值读数仪直接测定每个孔的吸光值, 获得了各个细菌在不同壳多糖浓度中的生长曲线和壳多糖抑制细菌生长的最低抑制浓度(MIC, Minimum inhibit concentration). 通过比较同一(各个)系列的壳多糖在这些相同(不同)细菌的MIC变化规律与壳多糖的化学结构的关系, 发现同一壳多糖对不同的细菌的MIC值是不相同的, 因而壳多糖抑制细菌生长的能力首先与细菌本身特点有关, 但与是否为革兰氏阳性菌或阴性菌无直接的相关性; 同一细菌对不同化学结构的壳多糖有一定的相关性, 在壳多糖的聚合程度(DP)相同的条件下, 壳多糖中氨基被乙酰化(DA)的程度越低, 壳多糖抑制细菌生长的MIC值越低, 壳多糖抑制细菌生长的能力就越强; 同样,在DA相同的情况下, 分子越小, 壳多糖抑制细菌生长的MIC值越低, 抑制细菌生长的能力越强. 根据上述实验结果, 初步推测壳多糖抑制细菌生长的机制可能与其在溶液中所带的正电荷多少有关.  相似文献   

19.
壳聚糖是甲壳素部分脱乙酰化的产物,脱乙酰度的大小对壳聚糖的性能影响很大。利用碱液法,通过对反应时间的控制,制备了不同脱乙酰度的壳聚糖并对其性能进行了研究。结果表明,随着脱乙酰度的增大,壳聚糖膜的吸水率增加,而对其表面接触角的变化则没有影响。同时,壳聚糖海绵对Ca2+和牛血清蛋白(BSA)的吸附能力也随着脱乙酰度的增大而增加。  相似文献   

20.

Chitosan and konjac glucomannan (KGM) blend fibers were prepared by spinning their solution through a viscose‐type spinneret into a coagulating bath containing aqueous sodium hydroxide and ethanol. The structure and properties of the blend fibers were studied with the aids of infrared spectra (IR), scanning electron micrography (SEM) and X‐ray diffraction (XRD). The structure analysis indicated that there were strong interaction and good miscibility between the chitosan and KGM molecule which resulted from intermolecular hydrogen bonds. Mechanical properties and water‐retention properties were measured. Through controlling blend conditions, blend fibers can obtain better mechanical properties than the pure chitosan fiber. The water‐retention values (WRV) of blend fibers increase as the amount of KGM is raised. The fibers treated with alcoholic solution of acetic acid have good antibacterial activity to Staphylococcus aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号