首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Quaternary Cesium Copper(I) Lanthanoid(III) Selenides of the Type CsCu3M2Se5 (M = Sm, Gd — Lu) By oxidation of mixtures of copper and lanthanoid metal with elemental selenium in molar ratios of 1 : 1 : 2 and in addition of CsCl quaternary cesium copper(I) lanthanoid(III) selenides with the formula CsCu3M2Se5 (M = Sm, Gd — Lu) were obtained at 750 °C within a week from torch‐sealed evacuated silica tubes. An excess of CsCl as flux helps to crystallize golden yellow or red, needle‐shaped, water‐resistant single crystals. The crystal structure of CsCu3M2Se5 (M = Sm, Gd — Lu) (orthorhombic, Cmcm, Z = 4; e. g. CsCu3Sm2Se5: a = 417.84(3), b = 1470.91(8), c = 1764.78(9) pm and CsCu3Lu2Se5: a = 407.63(3), b = 1464.86(8), c = 1707.21(9) pm, respectively) contains [MSe6]9— octahedra which share edges to form double chains running along [100]. Those are further connected by vertices to generate a two‐dimensional layer parallel to (010). By edge‐ and vertex‐linking of [CuSe4]7— tetrahedra two crystallographically different Cu+ cations build up two‐dimensional puckered layers parallel to (010) as well. These sheet‐like structure interconnects the equation/tex2gif-stack-3.gif{[M2Se5]4—} layers to create a three‐dimensional network according to equation/tex2gif-stack-4.gif{[Cu3M2Se5]}. Thus empty channels along [100] form, apt to take up the Cs+ cations. These are surrounded by eight plus one Se2— anions in the shape of (2+1)‐fold capped trigonal prisms with Cs—Se distances between 348 and 368 pm (8×) and 437 (for M = Sm) or 440 pm (for M = Lu), respectively, for the ninth ligand.  相似文献   

2.
About Lanthanide Oxotantalates with the Formula MTaO4 (M = La – Nd, Sm – Lu) Besides being a by‐product of solid state syntheses in tantalum ampoules the lanthanide(III) oxotantalates of the formula MTaO4 can be easily prepared by sintering lanthanide sesquioxide M2O3 and tantalum(V) oxide Ta2O5 with sodium chloride as flux. Under these conditions two structure types emerge depending upon the M3+ cationic radius. For M = La – Pr the MTaO4‐type tantalates crystallize in the space group P21/c with lattice constants of a = 762(±1), b = 553(±4), c = 777(±4) pm, β = 101(±1)° and four formula units per unit cell. With M = Nd, Sm – Lu, the monoclinic cell dimensions (space group P2/c) shrink to the lattice constants like a = 516(±9), b = 551(±9), c = 534(±9) pm, β = 96.5(±0.3)° and there are only two formula units present. Both structures show a coordination sphere of eight oxygen atoms for the lanthanide trications shaped as distorted square antiprism for the structure with the larger lanthanides (in the following referred to as A‐type) and as trigonal dodecahedron for the structure with the smaller ones (called as B‐type in the following). The coordination environment about the Ta5+ cations can be described as a slightly distorted octahedron (CN = 6) for the A‐type structure of MTaO4 and a heavily distorted one (CN = 6) for the B‐type. The difference between the two types results from the interconnection of these [TaO6]7? octahedra. Whereas they are connected via four vertices to form corrugated layers according to parallel the bc‐plane in the A‐type, the octahedra of the B‐type MTaO4 structure share edges to built up zig‐zag chains along the c axis.  相似文献   

3.
Nd4N2Se3 and Tb4N2Se3: Two non‐isotypical Lanthanide(III) Nitride Selenides The non‐isotypical nitride selenides M4N2Se3 of neodymium (Nd4N2Se3) and terbium (Tb4N2Se3) are formed by the reaction of the respective rare‐earth metal with sodium azide (NaN3), selenium and the corresponding rare‐earth tribromide (MBr3) at 900 °C in evacuated silica ampoules after seven days. Each of them crystallizes monoclinically in the space group C2/c with Z = 4 for Nd4N2Se3 (a = 1300.47(4), b = 1009.90(3), c = 643.33(2) pm, β = 90.039(2)°) and in the space group C2/m with Z = 2 for Tb4N2Se3 (a = 1333.56(5), b = 394.30(2), c = 1034.37(4) pm, β = 130.377(2)°), respectively. The crystal structures differ fundamentally in the linkage of the structure dominating N3‐ centred (M3+)4 tetrahedra. In Nd4N2Se3, the [NNd4] units are edge‐linked to bitetrahedra which are cross‐connected to [N(Nd1)(Nd2)]3+ layers via their remaining four corners, whereas the [NTb4] tetrahedra in Tb4N2Se3 share cis‐oriented edges to form strands [N(Tb1)(Tb2)]3+. Both structures contain two crystallographically different M3+ cations, that show coordination numbers of six and seven (Nd4N2Se3) or twice six (Tb4N2Se3), respectively, relative to the anions (N3‐ und Se2‐). Each of the two independent kinds of Se2‐ anions provide the three‐dimensional linkage as well as the charge balance. The particular axial ratio a/c and the monoclinic reflex angle offer two choices for fixing the unit cell of Tb4N2Se3.  相似文献   

4.
The lanthanide selenidogermanates [{Eu(en)3}2(μ‐OH)2]Ge2Se6 ( 1 ), [{Ho(en)3}2(μ‐OH)2]Ge2Se6 ( 2 ), and [{Ho(dien)2}2(μ‐OH)2]Ge2Se6 ( 3 ) (en = ethylenediamine, dien = diethylenetriamine) were solvothermally prepared by the reactions of Eu2O3 (or Ho2O3), germanium, and selenium in en and dien solvents respectively. Compounds 1 – 3 are composed of selenidogermanate [Ge2Se6]4– anion and dinuclear lanthanide complex cation [{Ln(en)3}2(μ‐OH)2]4+ (Ln = Eu, Ho) or [{Ho(dien)2}2(μ‐OH)2]4+. The [Ge2Se6]4– anion is composed of two GeSe4 tetrahedra sharing a common edge. The dinuclear lanthanide complex cations are built up from two [Ln(en)3]3+ or [Ho(dien)2]3+ ions joined by two μ‐OH bridges. All lanthanide(III) ions are in eight‐coordinate environments forming distorted bicapped trigonal prisms. In 1 – 3 , three‐dimensional supramolecular networks of the anions and cations are formed by N–H ··· Se and N–H ··· O hydrogen bonds. To the best of our knowledge, 1 – 3 are the first examples of selenidogermanate salts with lanthanide complex counter cations.  相似文献   

5.
The Oxide Nitride Selenides M3ONSe2 of Trivalent Lanthanoids (M = Ce – Nd) Oxide nitride selenides of the trivalent lanthanoids (M = Ce – Nd) with the composition M3ONSe2 can be prepared by the oxidation of the respective lanthanoid metal with selenium and sodium azide (NaN3) in presence of impurities containing oxygen when the corresponding lanthanoid trichloride (MCl3) is used as sodium trap for the coformation of NaCl. The thermal treatment of these mixtures along with additional NaCl as flux at 900 °C in evacuated silica tubes secures the formation of fawn, transparent, lath‐shaped crystals. The monoclinic structure (C2/m, Z = 6) was determined from X‐ray single‐crystal diffraction data (Ce3ONSe2: a = 2480.51(14), b = 406.85(3), c = 952.83(6) pm, β = 95.506(4)°; Pr3ONSe2: a = 2462.72(14), b = 403.74(3), c = 947.26(6) pm, β = 95.731(4)°; Nd3ONSe2: a = 2440.35(14), b = 401.48(3), c = 944.02(6) pm, β = 95.763(4)°). Five crystallographically different M3+ cations reside in six‐ to eightfold coordination of the respective anions (three independent O2?/N3? and Se2? each), for which a statistic distribution of the light elements (O2? : N3? = 1 : 1) has to be assumed. However, the main features of the crystal structure are (O2?/N3?)‐centred (M3+)4 tetrahedra. For the first time ever within the same structure of this kind, condensation of these anion‐centred cation polyhedra forming strands and layers simultaneously could be detected. Cis‐edge connected [(O/N)M4]9.5+ tetrahedra build up the chain components running along [010], which are already known as dominating core in some crystal structures of pure nitride chalcogenides (e.g. Sm4N2S3 and Tb4N2Se3). A new motif of condensed tetrahedral units comprises the second feature. By fusing [(O/N)M4]9.5+ tetrahedra via vertices and edges, one‐dimensional strand sections from the cationic sheets of the Ce2O2S‐type structure, which are further connected only via common vertices to form a lower‐condensed steplike two‐dimensional layer , spreading parallel to the (100) plane, emerge for the very first time.  相似文献   

6.
The oxidation of zirconium(III) nitride (ZrN) with suitable amounts of selenium (Se) in the presence of sodium chloride (NaCl) as flux yields small yellow brownish platelets of the first zirconium(IV) nitride selenide with the composition Zr2N2Se. The new compound crystallizes in the hexagonal space group P63/mmc (no. 194) with a = 363.98(2) pm, c = 1316.41(9) pm (c/a = 3.617) and two formula units per unit cell. The crystallographically unique Zr4+ cations are surrounded by three selenide and four nitride anions in the shape of a capped trigonal antiprism. The Se2– anions are coordinated by six Zr4+ cations as trigonal prism and the N3– anions reside in tetrahedral surrounding of Zr4+ cations. These [NZr4]13+ tetrahedra become interconnected via three edges each to form $\rm^{2}_{\infty}$ {[(NZr4/4)2]2+} double layers parallel to the (001) plane, which are held together by monolayers of Se2– anions.  相似文献   

7.
After solid-state reactions of the light lanthanoid metals, their oxides and fluorides as well as selenium in sealed tantalum ampoules with sodium chloride as a fluxing agent at 850 °C for 8 days needle-shaped single crystals of Ln3F2Se2TaO4 (Ln = La – Nd) were obtained. They crystallize in the orthorhombic space group Pnma analogous to La3F2Se2NbO4 with a = 1133–1120 pm, b = 400–393 pm and c = 1812–1778 pm (Ln = La – Nd) for Z = 4 as the first known quinary lanthanoid(III) oxoselenotantalates(V) with fluoride and selenide anions. The three crystallographically different Ln3+ cations are all surrounded by nine anions (O2–, F and Se2–) each. Tantalum resides in an octahedral chalcogen coordination by forming trans-vertex oxygen-connected [TaO5Se]7– polyhedra, which build up chains 1{[TaOV2/2Ot3/1Set1/1]5–} along [010]. The sites of the four crystallographically different oxygen atoms and the two distinct fluoride anions were established by bond-valence calculations. One fluorine and three oxygen atoms are surrounded tetrahedrally by cations, while another fluoride and oxide anion exhibit just triangular non-planar coordination spheres. The two independent Se2– anions have five or six cationic neighbors.  相似文献   

8.
A new representative of rare‐earth metal(III) fluoride oxoselenates(IV) derivatized with alkali metals could be synthesized via solid‐state reactions. Colorless single crystals of CsSc3F6[SeO3]2 were obtained through the reaction of Sc2O3, ScF3, and SeO2 (molar ratio 1:1:3) with CsBr as reactant and fluxing agent. For this purpose, corundum crucibles embedded as liners into evacuated silica ampoules were applied as containers for these reactions at 700 °C for seven days. The new quintenary compound crystallizes in the trigonal space group P3m1 with a = 565.34(4) and c = 1069.87(8) pm (c/a = 1.892) for Z = 1. The crystal structure of CsSc3F6[SeO3]2 contains two crystallographically different Sc3+ cations. Each (Sc1)3+ is surrounded by six fluoride anions as octahedron, while the octahedra about (Sc2)3+ are formed by three fluoride anions and three oxygen atoms from three terminal [SeO3]2– anions. The [(Sc1)F6]3– octahedra link via common F vertices to six fac‐[(Sc2)F3O3]6– octahedra forming 2{[Sc3F6O6]9–} layers parallel to (001). These layers are separated by oxygen‐coordinated Cs+ cations (C.N. = 12), arranging for the charge compensation, while Se4+ cations within the layers surrounded by three oxygen atoms as ψ1‐tetrahedral [SeO3]2– units complete the structure. EDX measurements confirmed the composition of the title compound and single‐crystal Raman studies showed the typical vibrational modes of isolated [SeO3]2– anions with ideal C3v symmetry.  相似文献   

9.
The lanthanide chloride ortho‐oxomolybdates LnCl[MoO4] (Ln = La, Ce, Pr) crystallize in the monoclinic space group P21/c(a = 1921–1906 pm, b ≈? 580 pm, c = 804–789 pm, β ≈? 90.04°, Z = 8).In the crystal structure, two crystallographically unique Ln3+ cations are present, both with the same coordination environment of four Cl and six O2– anions in the shape of a distorted tetracapped trigonal prism. The two distinguishable Cl anions both display a coordination sphere of three plus one Ln3+ cations, building up distorted tetrahedra. These are fused together via four common edges to form litharge‐analogous layers (e = edge‐connecting) parallel to the (100) plane. Two crystallographically different oxomolybdate units are also found in the structure, which can be best described as strandsof apically vertex‐shared [MoO5]4– trigonal bipyramids of the formula (v = vertex‐connecting, t = terminal) along [001]. These building blocks, the layers and the chains are alternately stacked along the a axis. The peculiarity of this structure is expressed by the position of the Mo6+ cations, which are not situated in the center of the bipyramids, but reside offset in their lower or upper trigonal pyramids (≈? tetrahedra). The Mo6+ cations with an x / a parameter between 0 and 0.5 can be found within the lower trigonal pyramids of those bipyramids (if viewed along the [001] direction), whereas those with 0.5 < x / a < 1 are located in the upper trigonal pyramid. Therefore, an alternating arrangement of the strands is observed. Due to the special constitution of the Ln3+ cations in distorted litharge‐analogous layers, a special magnetic effect was assumed, but in phase‐pure samples of e.g. CeCl[MoO4] mainly Curie–Weiss behavior could be detected.  相似文献   

10.
On Sesquiselenides of the Lanthanoids: Single Crystals of C‐type Ce2Se3, U‐type Gd2Se3, and Z‐type Lu2Se3 Single crystals of lanthanoid sesquiselenides (M2Se3; here: M = Ce, Gd, Lu) are accessible through conversion of the elements (lanthanoid and selenium) in molar ratios of 2:3 within seven days at 850 °C from evacuated silica ampoules if equimolar amounts of NaCl serve as a flux. In the case of Ce2Se3 (a = 897.74(6) pm) und Gd2Se3 (a = 872.56(5) pm) the cubic C‐type (I4¯3d, Z = 5.333) forms as dark red beads, whereas the orthorhombic Z‐type (Fddd, Z = 16) emerges for Lu2Se3 (a = 1125.1(1), b = 798.06(8), c = 2387.7(2) pm) as orange‐yellow bricks. Upon oxidation of monochloride hydrides (MClHx or AyMClHx; M = Ce, Gd, Lu; x = 1; A = Li, Na; y = 0.5) with selenium in arc‐welded tantalum ampoules the same main products appear with C‐Ce2Se3 and Z‐Lu2Se3, even with a surplus of NaCl or LiCl as fluxing agent. In the case of Gd2Se3, however, black‐red needles of the orthorhombic U‐type (Pnma, Z = 4; a = 1118.2(1), b = 403.48(4); c = 1097.1(1) pm) are yielded instead of C‐Gd2Se3. C‐Ce2Se3 crystallizes in a cation‐deficient Th3P4‐type structure (Ce2S3 type) according to Ce2.6670.333Se4 (Z = 4) or with Z = 5.333 for the empirical formula Ce2Se3. Here, Ce3+ is coordinated by eight Se2— anions trigon‐dodecahedrally. In U‐Gd2Se3 (U2S3 type) two crystallographically independent Gd3+ cations with coordination numbers of 7 (Gd1) and 7+1 (Gd2), respectively, are present, exhibiting mono‐ or bicapped trigonal prisms as coordination polyhedra. The crystal structure of Z‐Lu2Se3 (Sc2S3 type) shows two different Lu3+ cations as well, which now both reside in octahedral coordination of six Se2— anions each.  相似文献   

11.
Rb6LiPr11Cl16[SeO3]12: A Chloride‐Derivatized Rubidium Lithium Praseodymium(III) Oxoselenate(IV) Transparent green square platelets with often truncated edges and corners of Rb6LiPr11Cl16[SeO3]12 were obtained by the reaction of elemental praseodymium, praseodymium(III,IV) oxide and selenium dioxide with an eutectic LiCl–RbCl flux at 500 °C in evacuated silica ampoules. A single crystal of the moisture and air insensitive compound was characterized by X‐ray diffraction single‐crystal structure analysis. Rb6LiPr11Cl16[SeO3]12 crystallizes tetragonally in the space group I4/mcm (no. 140; a = 1590.58(6) pm, c = 2478.97(9) pm, c/a = 1.559; Z = 4). The crystal structure is characterized by two types of layers parallel to the (001) plane following the sequence 121′2′1. Cl? anions form cubes around the Rb+ cations (Rb1 and Rb2; CN = 8; d(Rb+?Cl?) = 331 – 366 pm) within the first layer. One quarter of the possible places for Rb+ cations within this CsCl‐type kind of arrangement is not occupied, however the Cl? anions of these vacancies are connected to Pr3+ cations (Pr4) above and below instead, forming square antiprisms of [(Pr4)O4Cl4]9? units (d(Pr4?O) = 247–249 pm; d(Pr4?Cl) = 284–297 pm) that work as links between layer 1 and 2. Central cations of the second layer consist of Li+ and Pr3+. While the Li+ cations are surrounded by eight O2? anions (d(Li?O5) = 251 pm) in the shape of cubes again, the Pr3+ cations are likewisely coordinated by eight O2? anions as square antiprisms (for Pr1, d(Pr1?O2) = 242 pm) and by ten O2? anions (for Pr2 and Pr3), respectively. The latter form tetracapped trigonal antiprisms (Pr2, d(Pr2?O) = 251–253 pm and 4 × 262 pm) or bicapped distorted cubes (Pr3, d(Pr3?O) = 245–259 pm and 2 × 279 pm). The non‐binding electron pairs (“lone pairs”) at the two crystallographically different Ψ1‐tetrahedral [SeO3]2? anions (d(Se4+?O2?) = 169–173 pm) are directing towards the empty cavities between the layer‐connecting [(Pr4)O4Cl4]9? units.  相似文献   

12.
Seven crystal structures of five first‐row (Fe, Co, Ni, Cu, and Zn) and one second‐row (Cd) transition metal–4‐picoline (pic)–sulfate complexes of the form [M(pic)x]SO4 are reported. These complexes are catena‐poly[[tetrakis(4‐methylpyridine‐κN)metal(II)]‐μ‐sulfato‐κ2O:O′], [M(SO4)(C6H7N)4]n, where the metal/M is iron, cobalt, nickel, and cadmium, di‐μ‐sulfato‐κ4O:O‐bis[tris(4‐methylpyridine‐κN)copper(II)], [Cu2(SO4)2(C6H7N)6], catena‐poly[[bis(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)2]n, and catena‐poly[[tris(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)3]n. The Fe, Co, Ni, and Cd compounds are isomorphous, displaying polymeric crystal structures with infinite chains of MII ions adopting an octahedral N4O2 coordination environment that involves four picoline ligands and two bridging sulfate anions. The Cu compound features a dimeric crystal structure, with the CuII ions possessing square‐pyramidal N3O2 coordination environments that contain three picoline ligands and two bridging sulfate anions. Zinc crystallizes in two forms, one exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a tetrahedral N2O2 coordination containing two picoline ligands and two bridging sulfate anions, and the other exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a trigonal bipyramidal N3O2 coordination containing three picoline ligands and two bridging sulfate anions. The structures are compared with the analogous pyridine complexes, and the observed coordination environments are examined in relation to crystal field theory.  相似文献   

13.
A New Rare‐Earth Metal(III) Fluoride Oxoselenate(IV): YF[SeO3] Just two representatives of the rare‐earth metal(III) fluoride oxoselenates(IV) with the formula type MF[SeO3] (M = La and Lu) exist so far, whereas for the intermediate lanthanoids only M3F[SeO3]4‐type compounds (M = Gd and Dy) were accessible. Because of the similar radius of Y3+ to the radii of the heavier lanthanoid cations, a missing link within the MF[SeO3] series could be synthesized now with the example of yttrium(III) fluoride oxoselenate(IV). Contrary to LuF[SeO3] with its triclinic structure, YF[SeO3] crystallizes monoclinically in space group P21/c (no. 14, a = 657.65(7), b = 689.71(7), c = 717.28(7) pm, β = 99.036(5)° and Z = 4). A single Y3+ cation occupying the general site 4e is surrounded by six oxide and two fluoride anions forming [YO6F2]11? polyhedra (d(Y–O) = 228–243 plus 263 pm, d(Y–F) = 219–220 pm). These are linked via common O···O edges to chains running along [010] and adjacent chains get tied to each other by sharing common O3···O3 and O3···F edges which results in sheets parallel to (100). The Se4+ cations connect these sheets as ψ1‐tetrahedral [SeO3]2? anions (d(Se–O) = 168–174 pm) for charge balance via all oxygen atoms. Despite the different coordination numbers of seven and eight for the rare‐earth metal(III) cations the structures of LuF[SeO3] and YF[SeO3] appear quite similar. The chains containing pentagonal bipyramids [LuO5F2]9? are connected to layers running parallel to the (100) plane again. In fact it is only necessary to shorten the partial structure of the straight chains along [001] to achieve the angular chains in YF[SeO3]. As a result of this shortening one oxide anion at a time moves into the coordination sphere of a neighboring Y3+ cation and therefore adds up the coordination number for Y3+ to eight. For the synthesis of YF[SeO3] yttrium sesquioxide (Y2O3), yttrium trifluoride (YF3) and selenium dioxide (SeO2) in a molar ratio of 1 : 1 : 3 with CsBr as fluxing agent were reacted within five days at 750 °C in evacuated graphitized silica ampoules.  相似文献   

14.
Dimethylsulfone reacts in the binary superacidic systems XF/MF5 (X = H, D; M = As, Sb) under the formation of the corresponding salts of the type [(CH3)2SO(OX)]+[MF6]. The salts are characterized by low temperature vibrational spectroscopy. In case of [(CH3)2SO(OH)]+[SbF6] a single‐crystal X‐ray structure analysis is reported. The salt crystallizes in the orthorhombic space group Pbca with eight formula units per unit cell [a = 10.3281(3) Å, b = 12.2111(4) Å, c = 13.9593(4) Å]. The experimental results are discussed together with quantum chemical calculations on the PBE1PBE/6‐311G++(3pd,3df) level of theory.  相似文献   

15.
The new rare earth metal rich intermetallic compounds RE4CoMg (RE = Y, La, Pr, Nd, Sm, Gd–Tm) were prepared via melting of the elements in sealed tantalum tubes in a water‐cooled sample chamber of a high‐frequency furnace. The compounds were investigated by X‐ray diffraction of powders and single crystals: Gd4RhIn type, , a = 1428.38(9) pm, wR2 = 0.0638, 680 F2 values, 20 variables for La4CoMg, a = 1399.5(2) pm, wR2 = 0.0584, 589 F2 values, 20 variables for Pr4CoMg, a = 1390.2(3) pm, wR2 = 0.0513, 634 F2 values, 20 variables for Nd3.90CoMg1.10, a = 1381.0(3) pm, wR2 = 0.0730, 618 F2 values, 22 variables for Sm3.92Co0.93Mg1.08, a = 1373.1(4) pm, wR2 = 0.0586, 611 F2 values, 20 variables for Gd3.92CoMg1.08, a = 1362.1(3) pm, wR2 = 0.0576, 590 F2 values, 20 variables for Tb3.77CoMg1.23, a = 1344.8(2) pm, wR2 = 0.0683, 511 F2 values, 20 variables for Dy3.27CoMg1.73, and a = 1343.3(2) pm, wR2 = 0.0560, 542 F2 values, 20 variables for Er3.72CoMg1.28. The cobalt atoms have trigonal prismatic rare earth coordination. Condensation of the CoRE6 prisms leads to a three‐dimensional network which leaves larger voids that are filled by regular Mg4 tetrahedra at a Mg–Mg distance of 316 pm in La4CoMg. The magnesium atoms have twelve nearest neighbors (3 Mg + 9 RE) in icosahedral coordination. In the structures with Nd, Sm, Gd, Tb, Dy, and Er, the RE1 positions which are not involved in the trigonal prismatic network reveal some RE1/Mg mixing and the Sm3.92Co0.93Mg1.08 structure shows small cobalt defects. Considering La4CoMg as representative of all studied systems an analysis of the chemical bonding within density functional theory closely reproduces the crystal chemistry scheme and shows the role played by the valence states of the different constituents in the electronic band structure. Strong bonding interactions were observed between the lanthanum and cobalt atoms within the trigonal prismatic network.  相似文献   

16.
Structural characterisation of a number of hydrated solids containing chiral, kinetically inert [Co(A–A)3]3+ cations (A–A = 2,2′‐bipyridine, 1,10‐phenanthroline, 4,4′‐dimethyl‐2,2′‐bipyridine) and chiral, kinetically labile [Ln(dipic)3]3– anions (Ln = La, Eu, Tb, Ho, Er, Lu, Y, though not for all cobalt cations; dipic = dipicolinate = pyridine‐2,6‐dicarboxylate) show a remarkable range of associations between the lattice components, though all are racemic arrays. Analysis of the structures in terms of short interatomic contacts between the components shows that, whereas numerous contacts of the heteroaromatic ligands do occur, very few define an arrangement which could be truly termed “π‐stacking” where the rings are closely parallel and atom overlaps in projection are substantial. Water is important in the highly hydrated lattice structures, not only because of hydrogen‐bonding interactions with itself and carboxylate‐O atoms but also because of its interactions with the aromatic units. The family [Co(bipy)3][Ln(dipic)3]·~13H2O are essentially isomorphous for the full range of Ln plus Y (triclinic, P\bar{1} , a = 12.3, b = 14.3, c = 16.5 Å, α = 94, β = 94, γ = 108 ?, Z = 2). Among the heavier lanthanides, the potential symmetry of the anion/cation combination is realised in the trigonal space group P\bar{3} , both species lying together as an ion‐pair, disposed on the trigonal axis for [Co(phen)3][Ln(dipic)3]·22H2O (Ln = Eu, Er; a = 15.2, c = 16.8 Å, Z = 2).  相似文献   

17.
The reinvestigation of the pseudo‐binary systems MBr–BiBr3 (M = Rb, Cs) revealed two new phases with composition MBi2Br7. Both compounds are hygroscopic and show brilliant yellow color. The crystal structures were solved from X‐ray single crystal diffraction data. The isostructural compounds adopt a new structure type in the triclinic space group P$\bar{1}$ . The lattice parameters are a = 755.68(3) pm, b = 952.56(3) pm, c = 1044.00(4) pm, α = 76.400(2)°, β = 84.590(2)°, γ = 76.652(2)° for RbBi2Br7 and a = 758.71(5) pm, b = 958.23(7) pm, c = 1060.24(7) pm, α = 76.194(3)°, β = 83.844(4)°, γ = 76.338(3)° for CsBi2Br7. The crystal structures consist of M+ cations in anticuboctahedral coordination by bromide ions and bromidobismuthate(III) layers 2[Bi2Br7]. The 2D layers comprise pairs of BiBr6 octahedra sharing a common edge. The Bi2Br10 double octahedra are further connected by common vertices. The bismuth(III) atoms increase their mutual distance in the double octahedra by off‐centering so that the BiBr6 octahedra are distorted. The CsBi2Br7 type can be interpreted as a common hexagonal close sphere packing of M and Br atoms, in which 1/4 of the octahedral voids are filled by Bi atoms. The structure type was systematically analyzed and compared with alternative types of common packings. The existence of a compound with the suggested composition CsBiBr4 could not be verified experimentally.  相似文献   

18.
Pale yellow single crystals of Sm2(SeO3)(Se2O5)2 (monoclinic, P21/c, Z = 4, a = 1003.6(2), b = 1022.5(2), c = 1287.3(2) pm, β = 112.3(2)°) were obtained from the reaction of Sm2O3 and SeO2 at 350 °C in a sealed glass ampoule. In the crystal structure both Se2O52? and SeO32? groups connect the Sm3+ ions into layers. Between the layers the lone electron pairs of the anions are located.  相似文献   

19.
The reaction of alkali carbonates and selenium acid yielded the “pyroanions” [Se2O7]2– containing alkali diselenates. By varying the alkali carbonates we were able to synthesize and determinate the crystal structures of the whole row from Li to Cs. Li2Se2O7 crystallizes isotypic to Li2S2O7 [Pnma, Z = 4, a = 13.815(3), b = 8.452(2) c = 5.0585(10) Å]. The structure of Na2Se2O7 [P$\bar{1}$ , Z = 2, a = 6.9896(14), b = 6.9938(14), c = 7.0829(14) Å, α = 83.32(3), β = 64.56(3), γ = 83.18(3)°] is isotypic to Ag2S2O7. A2Se2O7 (A = K, Rb) [A = K: C2/c, Z = 4, a = 12.851(3), b = 7.5677(15), c = 7.5677(15) Å, β = 93.35(3)°; A = Rb: C2/c, Z = 4, a = 13.118(3), b = 7.7963(16), c = 7.7811(16) Å, β = 94.03(3)°] are isotypic to K2S2O7. The crystal structure of Cs2Se2O7 [P$\bar{1}$ , Z = 10, a = 7.7271(3), b = 16.2408(8), c = 18.4427(8) Å, α = 89.685(2), β = 89.193(2), γ = 76.251(2)°] seems to be isotypic to the averaged room‐temperature modification of Cs2S2O7. With exception of the caesium compound all diselenate anions show an ecliptic arrangement and can be therefore classified as dichromate‐like structures. In Cs2Se2O7 most of the [Se2O7]2– units have a staggered alignment. The transition between both orientations can be explained by the increase of the cations size. Additionally the vibrational spectra of A2Se2O7 with A = Li – Cs are discussed as well as the resulting bond forces.  相似文献   

20.
Novel Gold Selenium Complexes: Syntheses and Structures of [Au10Se4(dpppe)4]Br2, [Au2Se(dppbe)], [(Au3Se)2(dppbp)3]Cl2, and [Au34Se14(tpep)6(tpepSe)2]Cl6 The reaction of gold phosphine complexes [(AuX)(PR3)] (X= halogen; R = org. group) with Se(SiMe3)2 yield to new chalcogeno bridged gold complexes. Especially within the use of polydentate phosphine ligands cluster complexes like [Au10Se4(dpppe)4]Br2 ( 1 ) (dpppe = 1, 5‐Bis(diphenylphosphino)pentane), [Au2Se(dppbe)] ( 2 ) (1, 4‐Bis(diphenylphosphino)benzene), [(Au3Se)2(dppbp)3]Cl2 ( 3 ) (dppbp = 4, 4′‐Bis‐diphenylphosphino)biphenyl) und [Au34Se14(tpep)6(tpepSe)2]Cl6 ( 4 ) (tpep = 1, 1, 1‐Tris(diphenylphosphinoethyl)phosphine, tpepSe = 1, 1‐Bis(diphenylphosphinoethyl)‐1‐(diphenylselenophosphinoethylphosphine) could be isolated and their structures could be determined by X‐ray diffraction. ( 1: Space group P1 (No. 2), Z = 2, a = 1642.1(11), b = 1713.0(9), c = 2554.0(16) pm, α = 80.41(3)°, β = 76.80(4)°, γ = 80.92(4)°; 2: Space group P21/n (No. 14), Z = 4, a = 947.3(2), b = 1494.9(3), c = 2179.6(7) pm, β = 99.99(3)°; 3: Space group P21/c (No. 14), Z = 8, a = 2939.9(6), b = 3068.4(6), c = 3114.5(6) pm, β = 109.64(3)°; 4: Space group P1 (No. 2), Z = 1, a = 2013.7(4), b = 2420.6(5), c = 2462.5(5) pm, α = 77.20(3), β = 74.92(3), γ = 87.80(3)°).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号