首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The polymer/small-molecule electron donor and nonfullerene organic electron acceptor are of structural similarity with both donor and acceptor molecules consisting of polycyclic fused-ring backbone and being decorated with alkyl-chains.In this study,we report that the introduction of binary fullerenes(C_(60)-/C_(70)-PCBM and C_(60)-/C_(70)-ICBA)into a nonfullerene binary system PBDB-T:ITIC reduces the polymer-nonfullerene acceptor intermixing,obtaining higher crystallinity with(100)crystal coherence length from 28 to 29–33 nm for the ITIC,and from 14 to 20–24 nm for the PBDB-T,and improved electron and hole mobilities both.Unprecedentedly,such a protocol reduces the ITIC optical band gap from 1.59 to 1.55 eV.As consequences,higher short-circuit current-density(17.8–18.4 vs.15.8 m A/cm~2),open-circuit voltage(0.92 vs.0.90 V)and fill-factor(0.72–0.73 vs.0.68)are simultaneously obtained,which ultimately afford higher efficient quaternary polymer solar cells with power conversion efficiencies(PCEs)up to 12.0%–12.8%comparing to the host binary device with 9.9%efficiency.For the polymer,ITIC,and ICBA/PCBM ternary blends,11%PCEs were recorded.The use of PCBM leads to larger red-shifting in thin film absorption and external quantum efficiency(EQE)response.Such effect is more pronounced when ICBA:PCBM mixture is used.These results indicate the size and shape of C_(60)and C_(70)as well as the substituent position of the second indene unit on C_(60)-/C_(70)-ICBA affect not only the blend morphology but also the electronic coupling in BHJ mixtures:the quaternary device performance increased in sequences of C_(70)-PCBM:C_(70)-ICBA→C_(70)-PCBM:C_(60)-ICBA→C_(60)-PCBM:C_(70)-ICBA→C_(60)-PCBM:C_(60)-ICBA.The resonant soft X-ray scattering(RSoXS)data indicated the most refined phase separation in the C_(60)-PCBM:C_(60)-ICBA based blend,corresponding to its best device function among the quaternary devices.These results indicate that the using of binary fullerenes as the acceptor additives allows for tuning nonfullerene blended film’s optical properties and filmmorphologies,shedding light on the designing high-performance multi-acceptor polymer solar cells.  相似文献   

2.
Differential scanning calorimetry (DSC) was used to study the binary systems of C60-o-xylene and C70-o-xylene and the ternary system C60-C70-o-xylene. Fullerene C60 formed solvated crystals C60·2C8H10 with incongruent melting point 320 K and with enthalpy of decomposition 31±3 kJ (mol of C60)-1. Two solvated crystals of C70 with incongruent melting points 283 and 369 K, and with decomposition enthalpies 18.5±2.2 and 23.0±1.5 kJ (mol of C70)-1, were formed from o-xylene solutions. Three ternary compositions with C60/C70 mole ratios of 3:1, 1:1 and 1:3 were scanned by DSC. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Polarized Raman spectra (single crystal) at 300 K and infrared spectra (powder) at 300 and 77 K in the region 250–1000 cm?1 of a binary molybdate of terbium and europium have been recorded. Based on C2v symmetry, group theoretical analysis has been carried out and a vibrational assignment is proposed.  相似文献   

4.
Thermodynamic properties of a binary system containing of 0.2 mass fractions of C5H12 and 0.8 mass fractions of H2O over the density and temperature ranges 87–713.68 kg/m3 and 303–684 K at pressures up to 60 MPa were studied experimentally using the constant volume piezometer method. Phase equilibrium lines and critical points of the system were obtained.  相似文献   

5.
Selective addition to the C70 cage divides its π‐conjugated system into various smaller π‐conjugated systems with enhanced fluorescent properties. Key reactions include chlorination, methoxylation, ozonation, and Bingel or Bingel–Hirsch reactions. The maximum emission wavelength of the C70 multiadducts ranges from 450 to 655 nm. Among the C70 multiadducts, C70(OMe)8(C(COOEt)2)3 showed the highest quantum yield (Φ F=0.18) and the largest Δ[λ max(emission)− λ max(absorption)] (402 nm), with maximum emission at 655 nm.  相似文献   

6.
A new salt, (MDABCO+)(C60.?) ( 1 ; MDABCO+=N‐methyldiazabicyclooctanium cation), was obtained as single crystals. The crystal structure of 1 determined at 250 and 100 K showed 3D close packing of fullerenes with eight fullerene neighbors for each C60.?. These neighbors are located at 10.01–10.11 Å center‐to‐center distances (250 K) and van der Waals interfullerene C???C contacts are formed with four fullerene neighbors arranged in the bc plane. Fullerene ordering observed below 160 K is accompanied by the appearance of one and a half independent C60.? and trebling of the unit cell along the b axis. Fullerenes are packed closer to each other at 100 K. As a result, fullerenes are located in the three‐dimensional packing at 9.91–10.12 Å center‐to‐center distances and 18 short interfullerene C???C contacts are formed for each C60.?. Although they are closed packed, fullerenes are not dimerized down to 1.9 K. Magnetic data indicate strong antiferromagnetic coupling of spins in the 70–300 K range with a Weiss temperature of Θ=?118 K. Magnetic susceptibility shows a round maximum at 46 K. Such behavior can be described well by the Heisenberg model for square two‐dimensional antiferromagnetic coupling of spins with an exchange interaction of J/kB=?25.3 K. This magnetic coupling is one of the strongest observed for C60.? salts.  相似文献   

7.
Cryochemical reactions of the direct and initiated (by photolysis and radiolysis) halogenation of carbon nanomaterials (C60 fullerene, nanotubes, and nanofibers) at 77–240 K were investigated by the ESR, IR spectroscopy, and elemental analysis techniques. A high reactivity of C60 in reactions with fluorine and chlorine with the formation of corresponding derivatives was shown. High concentrations of radical intermediates indicating the radical chain halogenation of C60 were detected (the kinetic chain length for the chlorination process reaches 104–106 units). The amount of chlorine attached to fullerene is ~35% and practically does not depend on the initiation mode (UV or γ-irradiation at doses up to 350 kGy). The mechanism of the cryochemical halogenation of C60 is considered within the limits of the model of multicenter synchronous transitions in a molecular complex consisting of several reactant molecules including molecular fluorine or chlorine and ensuring a net exothermic effect. The amount of chlorine added to nanotubes and nanofibers did not exceed 2.5–8%, thereby indicating a low reactivity of these materials under cryogenic conditions.  相似文献   

8.
For the first time the total and relative contents of the stable ozonolysis products of fullerene C70 solutions were identified by IR spectroscopy and elemental and chemical analyses. At the 100% conversion of C70 a mixture of products corresponding to the empirical formula C70O14.3H0.21 (epoxides: polyketones: polyesters: secondary fullerene ozonides (SFOZ): acids = 1.07: 6: 6: 0.21: 1.02) is formed. The content of polyketones, polyesters, acids, and SFOZ increases during the whole ozonolysis time (1 h). The number of oxygen atoms in epoxides C70O n (n = 1–4) is lower than that in epoxides C60O n (n = 1–6) formed by the ozonolysis of fullerene C60. The kinetic curve of accumulation of epoxides C70O n (n = 1–4) passes through a maximum, which is observed 0.5 min after the beginning of ozonolysis. No epoxides were identified among the products 3.5 min after the ozonolysis. The photoluminescence (PL) (λmax = 645 and 685 nm) of fullerene polyketones in glassy EtO2/EtOH solutions frozen at 77 K was observed. This PL is much brighter, than that of polyketones formed upon the ozonolysis of fullerenes C60. For the first time the chemiluminescence (CL) was detected and studied upon the ozonolysis of C70 solutions at 300 K. The CL emitters are excited states of fullerene polyketones. The CL spectrum is partially overlapped with the known CL spectrum appeared upon the ozonolysis of C60max = 685 nm) but contains the greater number of maxima (λmax = 645 and 685 nm), which is related to a lower symmetry of the C70 oxidation products.  相似文献   

9.
The distribution of C60 and C70 fullerenes in the extraction system (C60 + C70)-α-pinene-ethanol-H2O was studied at constant C60 to C70 ratio and variable total fullerene concentration at 25°C. The relationship between the C60 and C70 content in ethanol (I) and α-pinene (II) phases is nonlinear over the entire fullerene concentration range.  相似文献   

10.
The structural and phase state of the C60-C70 system at various C60/C70 ratios in mixtures obtained by the vaporization of solutions in toluene at ∼98°C was studied by X-ray structure analysis, differential scanning calorimetry, and infrared spectroscopy. Solid solutions based on the face-centered cubic packing of C60 are not formed in the C60-C70 system at C70 contents from 0.5 to 50 wt %. The hexagonal close packing of a solid solution of C60 in C70 can be formed as a result of the thermally activated decomposition of the ternary crystal solvate in the C60-C70-C6H5CH3 system. The structural state of multiphase mixtures formed under conditions far from equilibrium is characterized by a high degree of structure imperfection and greater ability to undergo oxidation compared with C60 and C70.  相似文献   

11.
Solubility of light fullerenes (C60, C70, and the standard fullerene mixture containing (wt %): C60 65, C70 34, C n>70 1) in the oleic, linoleic and linolenic acids, respectively, at 20–80°C was studied and the corresponding solubility polytherms were reported.  相似文献   

12.
《化学:亚洲杂志》2017,12(14):1824-1835
An adaptable cyclic porphyrin dimer with highly flexible linkers has been used as an artificial molecular container that can efficiently encapsulate various aromatic guests (TCNQ/C60/C70) through strong π–π interactions by adjusting its cavity size and conformation. The planar aromatic guest (TCNQ) can be easily and selectively exchanged with larger aromatic guests (C60/C70). During the guest‐exchange process, the two porphyrin rings switch their relative orientation according to the size and shape of the guests. This behavior of the cyclic container has been thoroughly investigated by using UV/Vis spectroscopy, NMR spectroscopy, and X‐ray crystal structure determination of the host–guest assemblies. The electrochemical and photophysical studies demonstrated the occurrence of photoinduced electron transfer from bisporphyrin to TCNQ/C60/C70 in the respective host–guest assemblies. The cyclic host can form complexes with C60 and C70 with association constants of (2.8±0.2)×105 and (1.9±0.3)×108 m −1, respectively; the latter value represents the highest binding affinity for C70 reported so far for zinc(II) bisporphyrinic receptors. This high selectivity for the binding of C70 versus C60 allows the easy extraction and efficient isolation of C70 from a C60/C70 fullerene mixture. Experimental evidence was substantiated by DFT calculations.  相似文献   

13.
The temperature dependence (over the range 20–80°C) of the solubility of light fullerenes (C60 and C70) and a mixture of fullerenes (60 wt % C60, 39 wt % C70, and 1 wt % C76–90) in styrene was studied. The corresponding solubility polytherms are given and characterized.  相似文献   

14.
A polythermal study of the solubility of C60 and a fullerene mixture (60% C60 + 39% C70 + 1% C76–C90) in pelargonic and caprylic acids was carried out at 20–80°C. The solubility polytherms are given and discussed.  相似文献   

15.
Defective state of C60 crystals was controlled by the recrystallization and annealing. The defective structure was examined by the X-ray diffraction and N2 adsorption at 77 K. Recrystallized C60 crystals without annealing showed broad diffraction peaks and the N2 adsorption isotherm had marked low pressure uptake and a hysteresis in the high pressure region, indicating presence of both micropores and mesopores. The average micropore width was 8 Å which is closed to the C60 molecular size, while the average mesopore one was 50 Å. The mesopores disappeared by annealing up to 393 K. On the other hand micropores of 8 Å remained even by heating up to 673 K.  相似文献   

16.
The solubility of fullerene C60 and a fullerene mixture [C60 (75%), C70 (24%), C76–80 (1%)] in linear alkanoic acids (C2–C9) was determined at 20°C. The solubilities of C60 and a fullerene mixture in carboxylic acids were examined in relation to the number of carbon atoms in the carboxylic acid.  相似文献   

17.
A blue-green-emitting three-dimensional supramolecular compound (C10O2N2H8)(C9O7H6) (1) was synthesised under hydrothermal conditions and structurally characterised by elemental analysis, IR spectrum, 1H NMR and single-crystal X-ray diffraction. The crystal belongs to triclinic system with P 1¯ space group. The crystal structure is stabilised by O–H…O, O–H…N hydrogen bonds and π–π interactions (π–π stacking distance is 3.282 Å). Compound 1 exhibits intense green luminescence in solid state at 298 K (λem = 546 nm). In addition, absorption and fluorescence characteristics of compound 1 have been investigated in different solvents (DMSO, CH3CN and CH3OH). The results show that compound 1 exhibits a large red shift in both absorption and emission spectra as solvent polarity increases (polarity: DMSO>CH3CN>CH3OH), indicating a change in dipole moment of compound 1 upon excitation. Although the emission spectra of compound 1 in CH3OH are close to it in dimethyl sulfoxide (DMSO), it is revealed that the luminescence behaviour of compound 1 depends not only on the polarity of environment but also on the hydrogen bonding properties of the solvent. Meanwhile, temperature strongly affects the emission spectra of compound 1. Emission peaks of compound 1 were blue shift at 77 K than those at 298 K in both solid state (ca. 142 nm) and solution (ca. 6–23 nm), which was due to the non-radiative transition decreases at low temperature. Moreover, the quantum yield and fluorescence lifetime of compound 1 were also measured, which increased with increasing polarity of solvent, lifetime in DMSO at 298 K (τ1 = 0.92 μs, τ2 = 8.71 μs) was the longest one in solvents (298 K: τ1 = 0.87–0.92 μs, τ2 = 7.50–8.71 μs; 77 K: τ1 = 0.72–0.90 μs, τ2 = 6.88–7.45 μs), which was also shorter than that in solid state (298 K: τ1 = 1.13 μs, τ2 = 7.50 μs; 77 K: τ1 = 0.97 μs, τ2 = 8.97 μs). This was probably because of the weak polarity environment of compound 1 in solid state.  相似文献   

18.
The direct synthesis of lower (C2 to C4) olefins, key building‐block chemicals, from syngas (H2 /CO), which can be derived from various nonpetroleum carbon resources, is highly attractive, but the selectivity for lower olefins is low because of the limitation of the Anderson–Schulz–Flory distribution. We report that the coupling of methanol‐synthesis and methanol‐to‐olefins reactions with a bifunctional catalyst can realize the direct conversion of syngas to lower olefins with exceptionally high selectivity. We demonstrate that the choice of two active components and the integration manner of the components are crucial to lower olefin selectivity. The combination of a Zr–Zn binary oxide, which alone shows higher selectivity for methanol and dimethyl ether even at 673 K, and SAPO‐34 with decreased acidity offers around 70 % selectivity for C2–C4 olefins at about 10 % CO conversion. The micro‐ to nanoscale proximity of the components favors the lower olefin selectivity.  相似文献   

19.
20.
Summary The binary systems of C60with α-methyl- and α-chloronaphthalene have been studied by means of differential scanning calorimetry. C60was found to form the molecular complex of the van der Waals type with α-methylnaphthalene which melts incongruently below the boiling point of the solvent at temperature 382.7±3.0 K. The enthalpy of the desolvation reaction is 14.1±0.5 kJ mol-1of C60. The molar ratio of fullerene to solvent in the solvate is 1:1.5. In the system C60-α-chloronaphthalene a two-stage incongruent melting process has been observed at temperatures 314.1±4.6 K and 375.7±7.4 K with the enthalpies 8.1±2.6 kJ mol-1and 11.6±1.0 kJ mol-1, respectively. The composition of the most solvated phase equilibrated with the saturated solution at room temperature and below the first of the incongruent melting transitions was determined as 1:1.5. Based on the results obtained the thermodynamic characteristics of the incongruent melting reactions have been revealed and influence of solvate formation on solubility of C60has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号