首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maria Fyta 《化学:亚洲杂志》2023,18(1):e202200916
In this review, functionalized nanogaps embedded in nanopores are discussed in view of their high biosensitivity in detecting biomolecules, their length, type, and sequence. Specific focus is given on nanoelectrodes functionalized with tiny nanometer-sized diamond-like particles offering vast functionalization possibilities for gold junction electrodes. This choice of the functionalization, in turn, offers nucleotide-specific binding possibilities improving the detection signals arising from such functionalized electrodes potentially embedded in a nanopore. The review sheds light onto the use and enhancement of the tunnelling recognition in functionalized nanogaps towards sensing DNA nucleotides and mutation detection, providing important input for a practical realization.  相似文献   

2.
The electrical transmission of copper(II) phthalocyanine (CuPc) sandwiched between gold nanoelectrodes is studied on the basis of the Green function formalism coupled with the Gaussian-broadening technique. In the Au-CuPc-Au junction, broadened density of states (DOS) of the Au chains is defined as continuous DOS of electrodes to calculate the Green function of the electrodes. Two peaks of the transmission function found in the vicinity of the Fermi level are analyzed in terms of molecular orbitals (MOs). A convenient procedure to analyze MO contribution to a transmission peak is proposed. It is found that (I) symmetry-matched interactions between CuPc and the gold nanoelectrodes are important to the enhancement of the transmission function and (II) the nanoelectrodes have almost no effect on the electronic states of CuPc.  相似文献   

3.
ZrO2 Inorganic NanoPatterns have been prepared on conductive electrodes by the direct block copolymer templating method associated with sol–gel dip-coating followed by thermal treatment. They have then been successfully utilised to direct the co-electrodeposition of FePt nanoparticles into the 2D well-ordered arrays of nanoelectrodes with controlled dimension and periodicity. By this method, the FePt nanodomains are confined and stabilised into the well-ordered cavities of the ZrO2 membrane. While this system constitutes the first steps towards high-density magnetic storage media, the present fully bottom-up method can be easily scaled up and generalised to infinite nanocomposite combinations.  相似文献   

4.
On-wire lithography (OWL) fabricated nanogaps are used as a new testbed to construct molecular transport junctions (MTJs) through the assembly of thiolated molecular wires across a nanogap formed between two Au electrodes. In addition, we show that one can use OWL to rapidly characterize a MTJ and optimize gap size for two molecular wires of different dimensions. Finally, we have used this new testbed to identify unusual temperature-dependent transport mechanisms for alpha,omega-dithiol terminated oligo(phenylene ethynylene).  相似文献   

5.
We present the formation of single-molecule devices based on nanometre-spaced platinum electrodes. The electrodes are fabricated using a self-breaking electromigration method which yields nanogaps with long-term stability at room temperature [Prins et al., APL, 2009, 94, 123108.]. The stability at room temperature allows for detailed comparison of the device electrical properties before and after deposition of the molecules. In this way, conductance as a result of direct tunneling between the electrodes can be distinguished from conductance through the molecule. After molecule deposition, some devices display transport in the strong coupling regime while others are in the weak-coupling Coulomb blockade regime. Gated transport is observed in the latter case.  相似文献   

6.
The previously developed methodologies for fabricating flat, polished nanoelectrodes were extended to produce silver electrodes with the radii from 50 nm to micrometers. The prepared electrodes were characterized by steady-state voltammetry, scanning electrochemical microscopy (SECM), and atomic force microscopy. The protocol was developed for controlled chemical etching of silver in ammonia solutions to produce recessed nanoelectrodes. Voltammograms and SECM approach curves were obtained to evaluate the recess depth and other geometric parameters of the etched electrodes.  相似文献   

7.
Wang C  Hu X 《Talanta》2006,68(4):1322-1328
A new and simple method for fabricating controllable insulated nanometer-sized platinum electrodes is presented. Electrochemical etching of platinum wire is employed, and then a repeated process of cycle voltammetric deposition of electrophoretic paint and heat curing for shrink film follows which effectively controls the size of the nanoelectrodes, which is different from previous DC electrolysis deposition. This technique allows complete insulation of the whole body of the etched platinum wire, except for the very tip with the shrink film during heat curing of the film, leaving an electrochemical active area with effective diameters of nanometers. The process overcomes the pinhole formation resulting from the electrophoretic paint deposition process. The size of the platinum electrodes and the thickness of the deposed paint for insulation can be properly controlled and reproduced. The fabricated electrodes show ideal steady-state voltammetric behaviors from which the effective areas of the nanoelectrodes are measured. The effective radius of the prepared nanoelectrodes ranges from 3.1 nm to hundreds of nanometers.  相似文献   

8.
Nanoelectrodes, nanoelectrode arrays and their applications   总被引:2,自引:0,他引:2  
Arrigan DW 《The Analyst》2004,129(12):1157-1165
This review deals with the topic of ultrasmall electrodes, namely nanoelectrodes, arrays of these and discusses possible applications, including to analytical science. It deals exclusively with the use of nanoelectrodes in an electrochemical context. Benefits that accrue from use of very small working electrodes within electrochemical cells are discussed, followed by a review of methods for the preparation of such electrodes. Individual nanoelectrodes and arrays or ensembles of these are addressed, as are nanopore systems which seek to emulate biological transmembrane ion transport processes. Applications within physical electrochemistry, imaging science and analytical science are summarised.  相似文献   

9.
Gold nanowires were synthesized within polycarbonate membranes according to an electroless deposition method, obtaining nanoelectrode ensembles (NEEs) with special electrochemical features. NEEs were coupled with home-produced carbon graphite screen printed electrodes and the electrochemical properties of the original nanoelectrode ensemble on screen printed substrate (NEE/SPS) assembly has been tested for sensors application. Glucose oxidase has been used as model enzyme in order to verify the feasibility of disposable gold NEE/SPS biosensors. Finally, different immobilisation and electrochemical deposition techniques based on either self assembled monolayers of cysteamine (CYS) or amino-propyl-triethoxysilane (APTES) and conductive polyaniline (PANI) molecular wires were used. Spatial patterning of the enzyme on the polycarbonate surface and of PANI wires on gold nanoelectrodes was obtained. Possible direct electron transfer between the enzyme and the PANI modified gold nanoelectrodes has been evaluated.  相似文献   

10.
A new selective carbon paste electrode (CPE), was applied as an electrochemical sensor for the detection of norepinephrine (NOE). The sensor was modified with 6‐amino‐4‐(3,4‐dihydroxyphenyl)‐3‐methyl‐1,4‐dihydropyrano[2,3‐c],pyrazole‐5‐carbonitrile (ADPC) assisted Fe2O3@CeO2 coreshell nanoparticles (CNs) synthesized by simple method. To identify the redox properties of the modified electrode, and to examine its electrochemical properties, cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV) were conducted. Through electrochemical investigations, the coefficient of electron transfer between ADPC and the CNs/CPE (i. e. carbon paste electrode which was modified with CNs), the apparent charge transfer rate constant (ks), and the diffusion coefficient (D) were calculated. The NOE oxidation occurred at the optimum pH of 7.0 and a potential that was about 235 mV less positive than that of the unmodified carbon paste electrode. The interaction between the two metals in the Fe2O3@CeO2 coreshell led to an increase in the surface area and, consequently a sharp increase in the current. The differential pulse voltammogram of NOE showed two linear dynamic ranges an excellent detection limit (3σ) of 40 nM. In addition, NOE, AC and Trp were simultaneously determined at the modified electrode. Finally, NOE was quantitated in a number of real samples.  相似文献   

11.
王玮  苏宝法  詹东平 《电化学》2012,18(3):252-256
采用激光加热拉伸的方法制备铂纳米电极,并通过交流电刻蚀的方法制备纳米孔电极,在这两种电极上可通过电化学方法原位合成单颗普鲁士蓝微晶. 结果表明,普鲁士蓝微晶在纳米微孔电极上的机械附着强度增强. 这种方法可用于制备纳米修饰电极或研究功能微晶体材料的电化学性质.  相似文献   

12.
利用含碘硅烷前体制备包裹BODIPY染料分子的纳米二氧化硅颗粒.颗粒中的碘原子通过重原子效应有效提高了BODIPY染料分子的系间窜越效率,进而提高了染料分子的单重态氧量子产率及光损伤DNA的能力.这一结果表明,含碘二氧化硅纳米颗粒可以成为众多荧光染料分子在光动力疗法领域应用的一个有效药物负载和输送体系.  相似文献   

13.
一种新型低噪音碳纤维纳米电极   总被引:7,自引:3,他引:4  
近年来,碳纤维超微电极在生命科学领域中已取得了广泛应用,电极的超微尺寸使之能对生物微环境进行实时监测^[1],还可作为微柱分离的检测 ^[2],自Adams研究组1976年开展微电极伏安法对细胞外液中生物胺以及有关代谢物的检测研究以来,碳纤维超微电极已成为探测脑内甚至单个细胞内神经递质的一种有力的工具,人们已对单个细胞内神经递质^[3]及激素^[4]的释放进行了探索性研究。  相似文献   

14.
In this work, high‐performance dye‐sensitized solar cells (DSSCs) based on new low‐cost visible nickel complex dye (VisDye), TiO2 nanoparticle/nanotube composites electrodes, carbon nanoparticles counter electrodes, and ionic liquids electrolytes have been fabricated. The electronic structure, optical spectroscopy, and electrochemical properties of the VisDye were studied. Experimental results indicate that it is beneficial to improve the electron transport and power conversion efficiency using the nickel complex VisDye and TiO2 nanoparticle/nanotube composites. Under optimized conditions, the solar energy conversion efficiencies were measured. The short‐circuit current density (JSC), the open‐circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) of the DSSCs are 10.01 mA/cm2, 516 mV, 0.68, and 3.52%, respectively. This study demonstrates that the combination of new VisDye with TiO2 nanoparticle/nanotube composites electrodes and carbon nanoparticles counter electrodes provide a way to fabricate highly efficient dye‐sensitized solar cells in low‐cost production.  相似文献   

15.
Here, we describe a simple approach to fabricate graphene-based field-effect-transistors (FETs), starting from aqueous solutions of graphene-oxide (GO), processed entirely under ambient conditions. The process relies on the site-selective reduction of GO sheets deposited in between or on the surface of micro/nanoelectrodes. The same electrodes are first used for voltage-induced electrochemical GO reduction, and then as the source and drain contacts of FETs, allowing for the straightforward production and characterization of ambipolar graphene devices. With the use of nanoelectrodes, we could reduce different selected areas belonging to one single sheet as well.  相似文献   

16.
A new method to increase the active area (A act) of nanoelectrode ensembles (NEEs) is described. To this aim, gold nanoparticles (AuNPs) are immobilized onto the surface of NEEs using cysteamine as a cross-linker able to bind the AuNPs to the heads of the nanoelectrodes to obtain the so-called AuNPs-NEEs. The analysis of the cyclic voltammograms recorded in pure supporting electrolyte showed that the presence of the nanoparticles reflects in an, approximately, ten-times increase in the electrochemically active area of the ensemble. The measurement of the amount of electroactive polyoxometalates, which can be adsorbed on the gold surface of NEEs vs. AuNPs-NEEs, confirmed a significant increase of active area for the latter. These evidences indicate that there is a good electronic connection between the AuNPs and the underlying nanoelectrodes. The possibility to exploit AuNPs-NEEs for biosensing application was tested for the case of DNA-hybridization detection. After immobilization on the gold surface of AuNPs-NEEs of a thiolated single-stranded DNA, the hybridization with complementary sequences labeled with glucose oxidase (GOx) was performed. The detection of the hybridization was achieved by adding to the electrolyte solution the GOx substrate (i.e., glucose) and a suitable redox mediator, namely the (ferrocenylmethyl) trimethylammonium (FA+) cation; when the hybridization occurs, an electrocatalytic increase of the oxidation current of FA+ is recorded. Comparison of electrocatalytic current recorded at DNA modified NEEs and AuNPs-NEEs indicate, for the latter, a significant increase in sensitivity in the detection of the DNA-hybridization event.  相似文献   

17.
18.
Nickel nanoparticles/TiO2 nanotubes/Ti electrodes were prepared by galvanic deposition of nickel nanoparticles on the TiO2 nanotubes layer on titanium substrates. Titanium oxide nanotubes were fabricated by anodizing titanium foil in a DMSO fluoride‐containing electrolyte. The morphology and surface characteristics of titanium dioxide nanotubes and Ni/TiO2/Ti electrodes were investigated using scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The results indicated that nickel nanoparticles were homogeneously deposited on the surface of TiO2 nanotubes. The electrocatalytic behaviour of nickel nanoparticles/TiO2/Ti electrodes for the methanol electrooxidation was studied by electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry and chronoamperometry methods. The results showed that Ni/TiO2/Ti electrodes exhibit a considerably higher electrocatalytic activity toward the oxidation of methanol.  相似文献   

19.
Homogeneous, circular Pt||ZrO2 nanoelectrodes have been synthesized through the sol–gel chemistry and the dip-coating process. These nanoelectrode arrays have been evaluated as a platform for electropolymerization of phenol, as model. We have shown that the microstructure of the polymer depends on the confined environment of the electrode and on the position of the –OH group of the monomer. Additionally, these nanoelectrodes have been tested as an electrochemical sensor for dihydroxybenzene isomers in aqueous medium. These Pt||ZrO 2 nanoelectrodes exhibit a detection limit of 2?×?10?7?M for resorcinol and 1?×?10?6?M for catechol.  相似文献   

20.
Electrochemically converting nitrate to ammonia is an essential and sustainable approach to restoring the globally perturbed nitrogen cycle. The rational design of catalysts for the nitrate reduction reaction (NO3RR) based on a detailed understanding of the reaction mechanism is of high significance. We report a Cu2O+Co3O4 tandem catalyst which enhances the NH3 production rate by ≈2.7-fold compared to Co3O4 and ≈7.5-fold compared with Cu2O, respectively, however, most importantly, we precisely place single Cu2O and Co3O4 cube-shaped nanoparticles individually and together on carbon nanoelectrodes provide insight into the mechanism of the tandem catalysis. The structural and phase evolution of the individual Cu2O+Co3O4 nanocubes during NO3RR is unveiled using identical location transmission electron microscopy. Combining single-entity electrochemistry with precise nano-placement sheds light on the dynamic transformation of single catalyst particles during tandem catalysis in a direct way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号