首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The adsorption and condensed film formation on mercury at the negative potential region for binary mixtures of dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB), cetyltrimethylammonium bromide (CTAB), octadecyltrimethylammonium bromide (OTAB) is studied in KBr at various temperatures from 5 to 45 °C. The formation of the CTAB condensed film is hindered with the addition of DTAB and TTAB. There are interactions between unlike hydrophobic chains. The strong interactions between the CTAB molecules do not take place when DTAB or TTAB is present above a certain concentration. This hindering is more pronounced in the case of TTAB compared to the same DTAB concentration, i.e. the increase of the chain length hinders the film formation. The initially adsorbed molecules play a templating role in the kinetics of the film formation and in the self-assembling of the molecules. The initial induction time strongly depends on the temperature. The less surface active CTAB can hinder the OTAB film formation in binary mixtures. Also, increased interaction between OTAB and CTAB can be observed, indicating synergy effects in the film formation in some cases. The temperature range that the film is formed can be changed using mixtures of surfactants. Thus, the development of the film can become impossible, more difficult or even easier. Hysteresis phenomena are observed. The capacity versus time curves in the case that condensed film is formed are treated with the Avrami plot formulation, giving values between 1.5 and 2 indicating a progressive one dimensional nucleation with constant growth rate or a decrease of the nucleation rate during the overall film formation. There is generally a marked effect of the chain length of the alkyl chain on the film formation.  相似文献   

2.
To evaluate the effect of preferential surface adsorption of bromide ions on the synergism of homologous cationic surfactant mixtures reported previously, the surface tension of the aqueous solutions of the hexadecyltrimethylammonium chloride (HTAC)-dodecyltrimethylammonium bromide (DTAB) system was measured as a function of the total molality of surfactants and the relative proportion of DTAB at 298.15 +/- 0.05 K under atmospheric pressure. The excess Gibbs energies calculated from them were -2.6 kJ mol(-)(1) in the mixed adsorbed film and -2.0 kJ mol(-)(1) in the mixed micelle, respectively. A useful analytical procedure to evaluate the composition of individual ions (hexadecyltrimethylammonium, dodecyltrimethylammonium, chloride, and bromide ions) in the adsorbed film and micelle was developed and applied.  相似文献   

3.
Surface tension of aqueous solutions of mixtures of dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium chloride (DTAC) has been measured and analyzed by using thermodynamic relations. The adsorbed film has been found to contain more DTAB molecules than the solution. The shape formed by the curves of the total molality at constant surface tension against the solution and surface compositions indicates the ideal mixing of the DTAB and DTAC molecules in the adsorbed film. Micellar composition has been estimated at the critical micelle concentration (CMC). The micelles have been found to be richer in DTAB than the solution, but poorer in DTAB than the adsorbed film at the CMC. The DTAB and DTAC molecules have been shown to mix ideally in the micelles. From the comparison with the results on the system of decylammonium bromide and decylammonium chloride, it has been concluded that, on the mixing of surfactants differing only in counter ions, the adsorbed film is influenced more significantly by the ionic head group of the surfactant than the micelle.  相似文献   

4.
Mixed micellization behavior of dimeric cationic surfactant ethanediyl-1,2-bis (dimethyldodecylammonium bromide) (12-2-12) with a series of monomeric cationic surfactants dodecyltrimethyl ammonium bromide (DTAB), tetradecyltrimethyl ammonium bromide (TTAB), and cetyltrimethyl ammonium bromide (CTAB) has been studied in aqueous and aqueous polyvinylpyrrolidone (PVP) solutions at 298.15, 308.15, and 318.15 K, respectively, using conductometric method. Various thermodynamic parameters like mixed micelle concentration (Cm), micelle mole fraction (X1), interaction parameter (β), and free energy of mixing (ΔGex) of the mixed systems have been determined and analyzed using Rubingh's regular solution theory. The results indicate that in aqueous solutions the binary mixtures of 12-2-12 with DTAB/TTAB behave nonideally with mutual synergism whereas that with CTAB shows almost ideal behavior at 298.15 K. At 318.15 K, all these binary mixtures exhibit antagonistic behavior. The effect of variation in chain length of alkyltrimethyl ammonium bromide surfactants on the interactions with 12-2-12 have also been evaluated and discussed.  相似文献   

5.
We have examined the polymer-surfactant interaction in mixed solutions of the cationic surfactants, i.e., dodecyltrimethylammonium chloride, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, tetradecyltriphenylphosphonium bromide, and tetradecylpyridinium bromide and a semiflexible anionic polyelectrolyte carboxymethylcellulose in water and aqueous salt solutions by various techniques: tensiometry, viscosimetry or ion-selective electrode method, and dynamic light scattering. We have investigated the effect of varying surfactant chain length, head group size, counterion, and ionic strength on the critical aggregation concentration (CAC) of mixed polymer surfactant systems and the collapse of the polymer molecule under different solution conditions. The CAC decreases with increasing alkyl chain length. Above a certain surfactant concentration, mixed aggregates start growing until their macroscopic phase separation. The growth is more rapid with greater surfactant tail length and with increasing head group size. This is attributed in both cases to the increasing hydrophobic interaction between polymer and surfactant. Among surfactants with monovalent halide counterions, iodide induces the strongest binding, reflected by the onset of growth of the mixed aggregates at low surfactant concentration. This is perhaps related to the decreasing hydration of the counterion from chloride to iodide. The surfactant concentration at which the viscosity of the solution starts to decrease sharply is smaller than the CAC, and probably reflects polymer chain shrinkage due to noncooperative binding.  相似文献   

6.
Thin-layer chromatography (TLC) of three cationic surfactants was performed on silica TLC plates with various solvent systems. The mutual separation of cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB) and dodecyltrimethylammonium bromide (DTAB) was achieved on silica TLC plates with ethanol: 1% aqueous ammonium chloride (4:6, v/v) as an eluent. Effects of cations and anions in the mobile phase on mobility and separation of CPC, TTAB and DTAB were examined. The interference due to the presence of metal cations as impurities on the resolution in the mixture of CPC, TTAB and DTAB was also examined. The limits of detection of CPC, TTAB and DTAB estimated were 0.015, 0.031 and 0.062 μg zone−1, respectively. The developed method was utilized to identify these surfactants in different spiked water samples after their preliminary separation.  相似文献   

7.
The total reflection X-ray absorption fine structure (TR-XAFS) technique was applied to adsorbed films at the surface of aqueous solutions of surfactant mixtures composed of dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium tetrafluoroborate (DTABF4). The obtained XAFS spectra were expressed as linear combinations of two specific spectra corresponding to fully hydrated bromide ions (free-Br) and partially dehydrated bromide ions adsorbed to the hydrophilic groups of surfactant ions (bound-Br) at the surface. The ratio of free- and bound-Br ions was determined as a function of surface tension and surface composition of the surfactants. Taking also the results in our previous studies on the DTAB - dodecyltrimethylammonium chloride (DTAC) and 1-hexyl-3-methylimidazolium bromide (HMIMBr) - 1-hexyl-3-methylimidazolium tetrafluoroborate (HMIMBF4) mixed systems into consideration, the relation between counterion distribution and miscibility of counterions at the solution surface was deduced for the surfactant mixtures having common surfactant ions but different counterions.  相似文献   

8.
Polymerization of methyl methacrylate (MMA) has been studied in ternary microemulsions which were stabilized by tetradecyltrimethylammonium bromide (TTAB) or stearyltrimethylammonium chloride (STAC). The sizes of MMA-swollen polymer particles (Rh) increased continuously during polymerization. This is in contrast to that of the styrene system, where Rh increased very rapidly to a maximum and then decreased continuously towards a constant value. The continuous growth of PMMA particles at 60°C are discussed. The stability of PMMA latexes increased with increasing the hydrophobic chain length of the cationic surfactant used. Traces of the coagulations of PMMA particles in the TTAB system can be seen from TEM. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
The ion–dipole interaction between dodecyltrimethylammonium cations and nonionic surfactant molecules in adsorbed films and micelles was investigated by concentrating on the difference in the degree of counterion binding by employing dodecyltrimethylammonium chloride (DTAC)–octyl methyl sulfoxide (OMS) and dodecyltrimethylammonium bromide (DTAB)–OMS mixtures. The phase diagrams of adsorption and micelle formation were constructed and then the nonideal mixing of different species of surfactants was demonstrated in terms of the excess Gibbs free energies of adsorption and micelle formation, and the surface excess areas. Furthermore the dependence of them on the counterion was clearly shown. All these results were found to support our previous view that the direct interaction between surfactant cation and the dipole of the hydrophilic part of a nonionic surfactant is essential in cationic-nonionic surfactant mixtures, i.e., the DTAC system with a lower counterion biding has more negative excess thermodynamic quantities than the DTAB system with a higher one.  相似文献   

10.
The alkaline hydrolysis of carsalam (2H-1,3-benzoxazine-2,4(3H)-dione), denoted as I, and its N-substituted derivatives i.e., N-methyl-1,3-benzoxazine-2,4-dione (II) and N-benzoyl-1,3-benzoxazine-2,4-dione (III) was studied spectrophotometrically at physiological temperature. The rate of hydrolysis was found to be independent on the substrate concentration. In case of I, the reaction was fractional order with respect to [OH(-)] while for II and III, reaction obeyed the first order kinetics. Effect of cationic surfactants with varying hydrophobic chains (cetyltrimethylammonium bromide, CTAB, tetradecyltrimethylammonium bromide, TTAB and dodecyltrimethylammonium bromide, DTAB) and with different head-group (cetyl pyridinium chloride, CPC) and anionic surfactant (sodium dodecyl sulfate, SDS) was also seen on the rate of alkaline hydrolysis of the carsalam and its derivatives. Cationic surfactants first catalyzed the rate of hydrolysis at lower concentrations followed by the inhibition at higher concentrations. The length of the alkyl chain had remarkable effect on the catalytic efficiency of the surfactants. Similarly N-substitution on substrate also increased the catalysis by micelles. The anionic surfactant SDS inhibited the rate of hydrolysis at all of the concentrations studied. The catalysis by cationic micelles followed by inhibition was treated in terms of the pseudophase ion-exchange model, while for the inhibition by SDS micelles the Menger-Portnoy model was used to fit the data. The effect of salts (NaCl, NaBr and (CH(3))(4)NBr) was also seen on the hydrolysis of II and it was found that all salts inhibited the rate of reaction. The inhibition follows the trend NaCl相似文献   

11.
The foam properties of mixtures of an eco-friendly amino-acid derived surfactant sodium lauroylglutamate (LGS) interacting with cationic surfactant dodecyl trimethyl ammonium bromide (DTAB), nonionic surfactant laurel alkanolamide (LAA) and anionic surfactant sodium dodecyl sulfonate (SDS), were investigated, respectively. It was amazing that the three investigated binary-mixed systems all showed obviously synergism effect on foaming, though LGS/DTAB catanionic mixture showed remarkable synergistic effect with no surprise. The equilibrium and dynamic surface activity, along with the interfacial molecular array behaviors of binary-mixed systems with different molar ratios at air/water surface were also studied. Moreover, the theoretical simulation was employed to investigate how the interfacial behaviors of surfactants at air/water surface affected the foam properties. The study might provide the meaningful guidance for utilizing the LGS-based systems, especially in constructing eco-friendly foam systems in the application areas of cosmetics, medicine and detergent.  相似文献   

12.
The conductances of tetradecyltrimethylammonium bromide (TTAB) + dodecyltrimethylammonium bromide (DTAB) mixtures over the entire mole fraction range of TTAB (αOITTAB) were measured in aqueous polyethylene glycol 1000 (PEG) containing 1, 2, 5 and 10 wt% of PEG at 30 °C. From the conductivity data, various micellar parameters were computed. The results have been explained on the basis of the medium effects as well as the adsorption of additive molecules at micelle-solution interface. The non-ideality in TTAB+DTAB mixtures was evaluated by using the regular solution theory and Motomura's formulation based on the excess thermodynamic quantities. It has been found that the regular solution interaction parameter (β) and micellar mole fraction (¯x m 2) remain almost unaffected even in the presence of upto 10 wt% of PEG. These results suggest that the additive remains only in the aqueous phase and perhaps only changing the environment surrounding the micelles by adsorbing at the micelle-solution interface.  相似文献   

13.
The kinetic investigations on the alkaline hydrolysis of tris-(1,10–phenanthroline)iron(II) has been explored spectrophotometrically in microheterogeneous environment at 301?K and ionic strength of 0.13?mol?L?1. Guar gum, cationic amphiphiles, and their mixtures are used as the reaction environments to carry out the reaction. Guar gum decreases the rate of reaction, which indicates that Fe(II) complex may be trapped in the hydrophobic region of gum. Cationic amphiphile decreases the rate in the presence of guar gum. The extent of interaction between guar gum and amphiphile increases with the hydrophobic carbon chain length. The critical aggregation concentration (CAC) and critical micelle concentration (CMC) of the amphiphiles (cetyl trimenthyl ammonium bromide (CTAB), tetradecyl trimenthyl ammonium bromide (TTAB), dodecyl trimenthyl ammonium bromide (DTAB)) in the presence of guar gum have been determined with conductometry and tensiometry. All observations support either weak or strong interaction of cationic amphiphiles with guar gum. Activation parameters of the reaction in different environments have been determined which corroborate the rate data.  相似文献   

14.
In this article, we discuss the structure and composition of mixed DNA-cationic surfactant adsorption layers on both hydrophobic and hydrophilic solid surfaces. We have focused on the effects of the bulk concentrations, the surfactant chain length, and the type of solid surface on the interfacial layer structure (the location, coverage, and conformation of the DNA and surfactant molecules). Neutron reflectometry is the technique of choice for revealing the surface layer structure by means of selective deuteration. We start by studying the interfacial complexation of DNA with dodecyltrimethylammonium bromide (DTAB) and hexadecyltrimethylammonium bromide (CTAB) on hydrophobic surfaces, where we show that DNA molecules are located on top of a self-assembled surfactant monolayer, with the thickness of the DNA layer and the surfactant-DNA ratio determined by the surface coverage of the underlying cationic layer. The surface coverages of surfactant and DNA are determined by the bulk concentration of the surfactant relative to its critical micelle concentration (cmc). The structure of the interfacial layer is not affected by the choice of cationic surfactant studied. However, to obtain similar interfacial structures, a higher concentration in relation to its cmc is required for the more soluble DTAB surfactant with a shorter alkyl chain than for CTAB. Our results suggest that the DNA molecules will spontaneously form a relatively dense, thin layer on top of a surfactant monolayer (hydrophobic surface) or a layer of admicelles (hydrophilic surface) as long as the surface concentration of surfactant is great enough to ensure a high interfacial charge density. These findings have implications for bioanalytical and nanotechnology applications, which require the deposition of DNA layers with well-controlled structure and composition.  相似文献   

15.
The interaction between sodium perfluorooctanoate (SPFO) and dodecyltrimethylammonium bromide (DTAB) was studied by several methods and it was found strongly synergistic. Above a mole fraction of SPFO in the surfactant mixture (alpha(SPFO))=0.38, the interaction is repulsive and increases with the content of SPFO in both, the overall mixture and micelles, whereas the interaction is attractive if DTAB is in excess. At alpha(SPFO)=0.38 the low miscibility between hydrocarbon and fluorocarbon is counterbalanced by the electrostatic attraction between the opposite charged head groups, and the micelle composition is ideal (i.e., the mole fraction of SPFO in micelles X(SPFO)=alpha(SPFO)=0.38). The solubility of fluorocarbon in hydrocarbon is lower than that of hydrocarbon in fluorocarbon. Micelles of DTAB act as a solvent for SPFO without important structural changes, whilst micelles of SPFO undergo important changes when dissolve DTAB. This asymmetry may be interpreted as caused by the difference in chain length that favors the inclusion of the shorter chain in micelles of the longer surfactant, but disfavors the opposite process. Above X(SPFO)=0.5 there is an excess adsorption of bromide ions on the mixed micelles surface, giving rise to a high zeta potential. Micelles of pure SPFO or pure DTAB show an important energy barrier which prevents micelle flocculation. The inclusion of SPFO in DTAB micelles produces a reduction of the energy barrier, which disappeared when alpha(SPFO)=0.5. This produces the flocculation of micelles giving rise to the formation of a non-birefringent coacervate, which is probably formed by unordered isometric clusters of micelles.  相似文献   

16.
Densities of aqueous solutions of mixtures of dodecyltrimethylammonium chloride (DTAC) and dodecyltrimethylammonium bromide (DTAB) have been measured as a function of total molality at constant composition and the apparent molar volumes of the mixtures were derived from the density data. The partial molar volumes of monomeric surfactant mixtures, the molar volumes of mixed micelles, and the volumes of formation of mixed micelles were evaluated and are compared with those for decyltrimethylammonium bromide (DeTAB) and DTAB mixtures. The partial molar volumes of monomeric surfactant mixtures and the molar volumes of mixed micelles are observed to depend linearly on the monomer and micelle compositions, respectively. Although the volume of formation of mixed micelles of the DeTAB-DTAB mixture depends on the micellar composition, that of the DTAC-DTAB mixture is observed to be almost independent of the micellar composition. This suggests that the volumes of the counter ions in the micellar solutions are almost equal to those in the monomeric solutions.  相似文献   

17.
 The conductances of hexadecyltrimethylammonium bromide (HTAB) and tetradecyltrimethylammonium bromide (TTAB) mixtures over the entire mole fraction range of HTAB were measured in aqueous binary mixtures of ethylene glycol monomethyl ether, monoethyl ether, and monobutyl ether, and of diethylene glycol monomethyl ether and monoethyl ether containing 10–30 wt% additive in their respective binary mixtures at 30 °C. Each conductivity curve showed a single break over the whole mole fraction range of HTAB–TTAB mixtures. From the break in the conductivity curve, various micellar parameters were calculated and the results were discussed with respect to the alkoxyethanol's additive effect on the mixed micelle formation. The micellar parameters of HTAB, TTAB, and of their mixtures showed a strong dependence both on the amount as well as on the number of repeating units in the presence of ethylene glycol derivatives, whereas a significant dependence only on the amount of additive was observed in aqueous diethylene glycol derivatives. The results in the former case were attributed to the hydrophobic hydration of the mixed micelles by the ethylene glycol derivatives, which showed a large dependence on the increase in the alkyl chain length of the additive. The hydrophobic hydration was considerably reduced in the case of diethylene glycol derivatives owing to the presence of an extra ether oxygen. An evaluation of the nonideality in the HTAB–TTAB mixtures revealed that in spite of the strong hydrophobic hydration of the HTAB–TTAB mixtures by the alkoxyethanols, the mixed micelles remain almost free from the additive molecules. Received: 11 January 2000/Accepted: 14 April 2000  相似文献   

18.
The chain-length compatibility of mixed anionic-cationic surfactants was investigated for the extraction of organophosphorus pesticides (OPPs). Cationic surfactants with different chain lengths (n = 12 and 16) were mixed with sodium dodecyl sulfate (SDS; n = 12) for the mixed anionic-cationic surfactants-based extraction. Six OPPs were studied including azinphos-methyl, parathion-methyl, fenitrothion, diazinon, chlorpyrifos, and prothiophos. Reversed-phase high-performance liquid chromatography was used for the determination of the studied OPPs. The extraction was performed using mixtures of SDS and cationic surfactants including dodecyltrimethyl ammonium bromide or dodecyltrimethylammonium bromide (DTAB; n = 12) and cetyltrimethyl ammonium bromide or cetyltrimethyl ammonium bromide (CTAB; n = 16). The parameters affecting the extraction efficiencies of two extraction systems were studied and discussed. The optimum condition for SDS-DTAB was 15 mmol L(-1) SDS and 1 mmol L(-1) DTAB in the presence of 15% (w/v) sodium chloride (NaCl). Meanwhile, the condition for SDS-CTAB was 10 mmol L(-1) SDS and 1.0 mmol L(-1) CTAB with 10% (w/v) NaCl. Under the optimum conditions, the extraction efficiency of SDS-DTAB (66-85%) was slightly higher than that of SDS-CTAB (61-82%). In addition, the SDS-DTAB system also gave greater enrichment factor than SDS-CTAB for all the studied OPPs. This result may be due to the compatibility of chain length between SDS and DTAB. The extraction using SDS-DTAB was successfully applied to determine OPPs in fruit samples (i.e., pomelo, apple, and pineapple). No contamination by the studied OPPs in samples was observed. Good accuracy with recoveries ranging from 77 to 105% was obtained. Low limits of detection were in the range of 0.003-0.01 mg kg(-1) which are below the MRLs established by EU-MRLs for the OPPs residues in fruit samples.  相似文献   

19.
Direct electrochemistry of dsDNA based on the enhancement effect of cationic surfactants such as dodecyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) was achieved by using a carbon paste electrode modified with multiwalled carbon nanotubes (MWCNTs/CPE) as the basal electrode. The results indicated that the dsDNA molecules have been adsorbed quite strongly on the cationic surfactants’ film and very well developed peaks which were attributed to the oxidation of guanine residues on the dsDNA molecule structure were obtained from both electrodes. The electrochemical behavior of dsDNA at the surface of the modified electrodes was also evaluated. Based on the signal of guanine, under the optimal conditions, very low levels of dsDNA were detected following short accumulation times with detection limits of 0.650 mg L?1 and 0.119 mg L?1 for DTAB/MWCNTs/CPE and TTAB/MWCNTs/CPE, respectively.  相似文献   

20.
The electron paramagnetic resonance (EPR) study has been carried out for the micellar solutions of various ionic surfactant solutions as well as various generations of aqueous dendrimer both in their respective presence as well as their absence at 25°C and in different media. From these measurements, the rotation correlation time (τB) have been calculated for all the ionic surfactant + PAMAM + water system. A variation in the τBvalue remains mostly constant for the dodecyltrimethyammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) + PAMAM + water ternary mixtures. The τBvalue shows an increase with the increase in the amount of PAMAM for SDS in basic medium and for 12-2-12 in acidic medium. It has been concluded from these results that SDS undergo complexation with all generations of PAMAM in basic medium and 12-2-12 in acidic medium and produce stronger hydrophobic environment. The nuclear magnetic resonance study (NMR) allowed us to evaluate the spin–spin relaxation (T1) times of SDS in the presence of all generations of PAMAM. The T1 values for all the tail protons of SDS showed a slight decrease with the increase in the constant amount of PAMAM suggesting the adsorption of PAMAM molecules on the micelle surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号