首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
In this paper, we report a novel and more general signal-on strategy for the fabrication of electrochemical aptamer-based (E-AB) biosensor. The principle is that the interaction between the target and the aptamer strand may induce the formation and subsequent dissociation of target–aptamer complex from an electrode surface, and consequently, the remaining DNA strand on the electrode surface can hybridize again with a ssDNA containing an electrochemical probe. Differential pulse voltammetric studies have revealed that this target induced disassociation (TID) strategy is an effective signal-on method for the detection of ATP molecules with good selectivity. The TID strategy may also have several advantages, such as independence on the specific structure of either the aptamers or their complementary sequences and promotion of the generalization of E-AB sensors, the more convincible results due to the signal-on model, and the unnecessity to label the aptamers, which provides the optimized status for the reaction with the targets, etc.  相似文献   

2.
Exosome analysis is emerging as an attractive noninvasive approach for disease diagnosis and treatment monitoring in the field of liquid biopsy. Aptamer is considered as a promising molecular probe for exosomes detection because of the high binding affinity, remarkable specificity, and low cost. Recently, many approaches have been developed to further improve the performance of electrochemical aptamer based(E-AB) sensors with a lower limit of detection. In this review, we focus on the development of using aptamer as a specific recognition element for exosomes detection in electrochemical sensors. We first introduce recent advances in evolving aptamers against exosomes. Then, we review methods of immobilization aptamers on electrode surfaces, followed by a summary of the main strategies of signal amplification. Finally, we present the insights of the challenges and future directions of E-AB sensors for exosomes analysis.  相似文献   

3.
Highly selective, sensitive, and stable biosensors are essential for the molecular level understanding of many physiological activities and diseases. Electrochemical aptamer-based (E-AB) sensor is an appealing platform for measurement in biological system, attributing to the combined advantages of high selectivity of the aptamer and high sensitivity of electrochemical analysis. This review summarizes the latest development of E-AB sensors, focuses on the modification strategies used in the fabrication of sensors and the sensing strategies for analytes of different sizes in biological system, and then looks forward to the challenges and prospects of the future development of electrochemical aptamer-based sensors.  相似文献   

4.
Lu Y  Zhu N  Yu P  Mao L 《The Analyst》2008,133(9):1256-1260
This study describes a new kind of aptamer-based electrochemical sensor that is not based on the target binding-induced conformational change of the aptamers by using a 15-mer thrombin-binding aptamer (5'-GGTTGGTGTGGTTGG-3') as the model oligonucleotide. The sensors are developed by first self-assembling the aptamer (i.e. a thrombin-binding aptamer) onto an Au electrode and then hybridizing the assembled aptamer with a ferrocene (Fc)-labeled short aptamer-complementary DNA oligonucleotide to form an electroactive double-stranded DNA (ds-DNA) oligonucleotide onto the Au electrode. The binding of the target (i.e. thrombin) towards the aptamer essentially destroys the Watson-Crick helix structure of the ds-DNA oligonucleotide assembled onto the electrode and leads to the dissociation of the Fc-labeled short complementary DNA oligonucleotide from the electrode surface to the solution, resulting in a decrease in the current signal obtained at the electrode, which can be used for the determination of the target. With the thrombin-binding aptamer as the model oligonucleotide, the current decrease obtained with the aptamer-based electrochemical sensors is linear with the concentration of thrombin within the concentration range from 0 to 10 nM (DeltaI/nA = 6.7C(thrombin)/nM + 2.8, gamma = 0.975). Unlike most kinds of existing aptamer-based electrochemical sensor, the electrochemical aptasensors demonstrated here are not based on the conformational change of the aptamers induced by the specific target binding. Moreover, the aptasensors are essentially label-free and are very responsive toward the targets. This study may pave a facile and general way to the development of aptamer-based electrochemical sensors.  相似文献   

5.
实验合成了多边形金纳米颗粒,通过壳聚糖(CHIT)将合成的多边形金纳米颗粒固定在玻碳电极表面,然后通过自组装技术将带巯基的捕获DNA探针固定在修饰有多边形金纳米颗粒的电极表面,利用杂交反应使可卡因适体与DNA捕获探针结合,制成非标记型可卡因适体传感器。以六氨合钌作为电化学指示剂,通过测量传感器与目标物可卡因结合前后电流变化情况对可卡因进行测定。考察了缓冲溶液的pH、可卡因培育时间、扫描速度等对测定的影响。结果表明,在pH为7.40时该传感器的检测范围为1.0×10-10~1.0×10-3 mol/L,检测限为3.0×10-11 mol/L。该传感器制作简单,响应好,抗干扰能力强。  相似文献   

6.
基于β-环糊精(β-CD)主客体竞争模式,构建了开关型凝血酶适配体电化学传感器.将末端修饰了二茂铁(Fc)的核酸适配体通过与β-CD的主客体识别固定在金电极表面,当凝血酶存在时,适配体由原来的直立线状构型变为"G-四链体",远离电极表面,适配体探针的氧化还原电流强度减小,即"Signal-off".利用此效应对凝血酶进行了灵敏检测,结果表明,在5.0×10-13~5.0×10-9 mol/L浓度范围内,凝血酶的浓度与电化学响应信号呈良好的线性关系,检出限为2.0×10-13 mol/L(3σ).与其它蛋白分子相比,本方法对凝血酶蛋白的检测具有高特异性.本传感器构建简单,再生性好,为生物血清样本中凝血酶的实时高效检测提供了方法.  相似文献   

7.
In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN)6]3−/4−. Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10 fM–100 nM) and a detection limit on the order of 0.90 fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health.  相似文献   

8.
《Electroanalysis》2018,30(3):398-401
This communication reports on electrochemical detection of thrombin based on labeling with osmium tetroxide bipyridine [OsO4(bipy)]. Tryptophan amino acids can be labeled at the C−C‐double bond, and at least some tryptophan moieties are accessible for labeling in thrombin. Using the catalytic hydrogen signal from adsorptive stripping voltammetry performed on hanging mercury drop electrode, we could detect as little as 1.47 nM [OsO4(bipy)]‐modified thrombin. We also tested the binding of [OsO4(bipy)]‐modified thrombin with the classic thrombin binding aptamer (TBA) on gold electrodes. This preliminary study revealed that even after modification, a major part of the affinity was conserved, and that the aptamer self‐assembled monolayer (SAM) could be regenerated several times. Molecular simulations confirm that [OsO4(bipy)]‐modified thrombin largely preserves the high binding affinity also of the alternative HD22 aptamer to thrombin, albeit at slightly reduced affinities due to steric hindrance when tryptophans 96 and 237 are labelled. Based on these simulations, compensatory modifications in the aptamer should result in significantly improved binding with labelled thrombin. This combined experimental‐computational approach lays the groundwork for the rational design of improved aptamer sensors for analytical applications.  相似文献   

9.
The goal of this work was to introduce a modified electrochemical sandwich model for target protein detection, exploiting antibody as the capturing probe, aptamer as the detection probe and methylene blue as the electrochemical active marker intercalating in the probing aptamer without previous labeling. With appropriate design of the sequence of the aptamer, the aptamer was successfully utilized instead of antibody for obtaining the electrochemical detection. A special immobilization interface consisting of nanogold-chitosan composite film was used to improve the conductivity and performance characteristics of the electrode. The capturing antibody was linked to the glassy carbon electrodes modified with composite film via a linker of glutaraldehyde. Differential pulse voltammetry was performed to produce the response signal. Thrombin was taken as the model target analyte to demonstrate the feasibility of proposed methodology. The sensor shows the linear response for thrombin in the range 1-60 nM with a detection limit of 0.5 nM. The proposed approach provides an alternative approach for sandwich protein assay using aptamers.  相似文献   

10.
We report, for the first time, the use of a Ni(II)-nitriloacetic acid (NTA) self-assembled monolayer (SAM) in the fabrication of an electrochemical peptide-based (E-PB) sensor for detection of anti-Ara h 2 antibodies. We compared the performance of the sensor fabricated on a Ni(II)-NTA SAM using a His-tagged peptide with the sensor fabricated using the conventional approach via direct immobilization of a thiolated peptide. While both sensors responded only to the correct antibody in the presence of random antibodies, we observed differences between the sensors. Specifically, the detection limit of the His-tagged sensor was 1 pM, significantly lower than the 200 pM detection limit of the conventional thiolated sensor. More importantly, unlike our previously developed E-PB sensors, both sensors are regenerable and reusable. The thiolated sensor can be readily regenerated using guanidine hydrochloride; whereas the His-tagged sensor can be regenerated by direct displacement of the His-tagged probes using Ni(II) ions. Overall, our results show that both approaches are well-suited for E-PB sensor fabrication; more importantly, specific sensor properties such as detection limit and dynamic range can be tuned by simply using a different probe immobilization method.  相似文献   

11.
Yang  Hongmei  Hu  Peiyu  Tang  Jing  Cheng  Ying  Wang  Fang  Chen  Zilin 《Journal of Solid State Electrochemistry》2021,25(4):1383-1391

A simple and sensitive bifunctional electrochemical aptasensor for detection of adenosine and thrombin has been developed using gold nanoparticles–electrochemically reduced graphene oxide (AuNPs-ERGO) composite film-modified electrode. Firstly, the reduced graphene oxide film and AuNPs were sequentially immobilized on glassy carbon electrode (GCE) surface. Secondly, thrombin aptamer was immobilized on the modified electrode. Finally, adenosine aptamer was hybridized with it to serve as a recognition element and methylene blue (MB) as electrochemical signal indicator. In the presence of adenosine or thrombin, the sensor recognized it and a conformational change was induced in aptamer, resulting in decrease of the peak current of MB. The linear relation between concentration of adenosine or thrombin and peak current of MB allowed quantification of them. Thanks to the special electronic characteristic of AuNPs-ERGO composite film, sensitivity of sensor was greatly improved. Under optimal conditions, the proposed aptasensor presented an excellent performance in a linear range of 25 nM to 750 nM for adenosine and 0.5 nM to 10 nM for thrombin. Detection limits were estimated to be 8.3 nM for adenosine and 0.17 nM for thrombin, respectively. Moreover, dual-analyte detection of adenosine and thrombin was achieved without potentially increasing the complexity and cost of the assay.

  相似文献   

12.
本文采用水热法合成了硫化铅量子点,将其与壳聚糖混合后修饰在玻碳电极上,利用PbS与巯基之间的强烈的键和作用,直接将所合成的带巯基的与可卡因适体互补的DNA固定到电极上,将金纳米颗粒标记在可卡因适体作为示踪物检测可卡因,研制了一种新型的用于快速测定可卡因的适体传感器.该适体传感器与不同浓度的可卡因培育时,可卡因适体与可卡...  相似文献   

13.
Whereas spectroscopic and chromatographic techniques for the detection of small organic molecules have achieved impressive results, these methods are generally slow and cumbersome, and thus the development of a general means for the real-time, electronic detection of such targets remains a compelling goal. Here we demonstrate a potentially general, label-free electronic method for the detection of small-molecule targets by building a rapid, reagentless biosensor for the detection of cocaine. The sensor, based on the electrochemical interrogation of a structure-switching aptamer, specifically detects micromolar cocaine in seconds. Because signal generation is based on binding-induced folding, the sensor is highly selective and works directly in blood serum and in the presence of commonly employed interferents and cutting agents, and because all of the sensor components are covalently attached to the electrode surface, the sensor is also reusable: we achieve >99% signal regeneration upon a brief, room temperature aqueous wash. Given recent advances in the generation of highly specific aptamers, this detection platform may be readily adapted for the detection of other small molecules of a wide range of clinically and environmentally relevant small molecules.  相似文献   

14.
An electrochemical aptasensor was developed for sensitive and specific detection of thrombin by combining homogenous recognition strategy and gold nanoparticles (AuNPs) amplification. Streptavidin‐alkaline phosphatase was used as reporter molecule. Compared with the traditional hairpin aptasensor monitoring the distance of the redox molecule from the electrode surface, the proposed aptasensor successfully overcome the limitations of distance and improved the stability and high affinity of the aptamer hairpin through homogenous recognition, which enhanced the sensitivity and selectivity of the sensors effectively. Additionally, AuNPs were employed to increase the active area and conductivity of the electrode, thus, improving the sensitivity of the aptasensor. As a result, the designed thrombin detection sensor obtained a lower detection limit of 0.52 pM in buffer and 6.9 pM in blood serum.  相似文献   

15.
利用激光可使纳米金修饰的双链DNA(dsDNA)去杂化和适配体的特异性,设计了一种新颖、稳定、可控且高灵敏的凝血酶检测方法。将两端分别修饰金纳米粒子与荧光标记物的核酸适配体与其互补链杂化制成稳定的dsDNA传感器,当凝血酶存在时,通过激光触发传感器去杂化释放适配体并与凝血酶结合,拉近金纳米粒子与荧光标记物的距离,产生猝灭使荧光信号发生变化。对激光照射时间、激光输出功率、温育时间等条件进行优化。在最优条件下,荧光强度变化值(ΔI)与凝血酶浓度在0.55~33 nmol/L范围内呈现出良好的线性关系,其线性回归方程为y=0.0082x+0.2714,相关系数R^2为0.98,血清中加标回收率为95.5~102.7%,且溶菌酶等无明显干扰。该方法可作为凝血酶的检测方法。  相似文献   

16.
In this work, a label-free electrochemical sensor based on target-induced displacement is reported with adenosine as the model analyte. The sensing substrate is prepared using a gold electrode modified with a self-assembled monolayer of 1,6-hexanedithiol that mediates the assembly of a gold nanoparticle film, which can increase the surface loading of capture probe and enhance the signal. An aptamer for adenosine is applied to hybridizing with the capture probe, yielding a double-stranded complex of the aptamer and the capture probe on the surface. The interaction of adenosine with the aptamer displaces the aptamer sequence and causes it to dissociate from the interface. This results in a decrease in the amount of aptamer/capture probe duplex form, and, accordingly, the desorption of methylene blue, an electroactive indicator bound to the duplex, from the electrode. Then, the redox current of the indicator can reflect the concentration of the analyte. The fabricated sensor is shown to exhibit high sensitivity, desirable selectivity and a three-decade wide linear range.  相似文献   

17.
E-DNA sensors, the electrochemical equivalent of molecular beacons, appear to be a promising means of detecting oligonucleotides. E-DNA sensors are comprised of a redox-modified (here, methylene blue or ferrocene) DNA stem-loop covalently attached to an interrogating electrode. Because E-DNA signaling arises due to binding-induced changes in the conformation of the stem-loop probe, it is likely sensitive to the nature of the molecular packing on the electrode surface. Here we detail the effects of probe density, target length, and other aspects of molecular crowding on the signaling properties, specificity, and response time of a model E-DNA sensor. We find that the highest signal suppression is obtained at the highest probe densities investigated, and that greater suppression is observed with longer and bulkier targets. In contrast, sensor equilibration time slows monotonically with increasing probe density, and the specificity of hybridization is not significantly affected. In addition to providing insight into the optimization of electrochemical DNA sensors, these results suggest that E-DNA signaling arises due to hybridization-linked changes in the rate, and thus efficiency, with which the redox moiety collides with the electrode and transfers electrons.  相似文献   

18.
A novel electrogenerated chemiluminescence aptamer-based (ECL-AB) biosensor for the determination of a small molecule drug is designed employing cocaine-binding aptamer as molecular recognition element for cocaine as a model analyte and ruthenium complex served as an ECL label. A 5′-terminal cocaine-binding aptamer with the ECL label at 3′-terminal of the aptamer was utilized as an ECL probe. The ECL-AB biosensors were fabricated by immobilizing the ECL probe onto a gold electrode surface via thiol-Au interactions. An enhanced ECL signal is generated upon recognition of the target cocaine, attributed to a change in the conformation of the ECL probe from random coil-like configuration on the probe-modified film to three-way junction structure, in close proximity to the sensor interface. The integrated ECL intensity versus the concentration of cocaine was linear in the range from 5.0 × 10−9 to 3.0 × 10−7 M. The detection limit was 1.0 × 10−9 M. This work demonstrates that the combination of a highly binding aptamer to analyte with a highly sensitive ECL technique to design ECL-AB biosensor is a great promising approach for the determination of small molecule drugs.  相似文献   

19.
《Electroanalysis》2006,18(15):1449-1456
A label‐free electrochemical impedance based protein biosensor was introduced by using aptamer as recognition tool. Our sensing protocol utilizes the affinity interaction between the thrombin and the self‐assembled DNA aptamer on gold electrode. This specific interaction increases the electrode interfacial electronic transfer resistance. The resistance signal is then “amplified” by using guanidine hydrochloride to denature the captured thrombin for increasing the hydrated radius of the thrombin, consequently blocking the electron transfer from solution to electrode. The sensor sensitivity is improved using this strategy and as low as 1.0×10?14 mol L?1 thrombin (enzymatic activity 10 U/mg) can be detected out.  相似文献   

20.
A novel electrochemiluminescence (ECL) aptasensor was proposed for sensitive and cost-effective detection of the target thrombin adopted an aptamer-based sandwich format. To detect thrombin, capture aptamers labeled with gold nanoparticles (AuNPs) were first immobilized onto the thio-silanized ITO electrode surface through strong Au-S bonds. After catching the target thrombin, signal aptamers tagged with ECL labels were attached to the assembled electrode surface. As a result, an AuNPs-capture-aptamer/thrombin/ECL-tagged-signal-aptamer sandwich type was formed. Treating the resulting electrode surface with tri-n-propylamine (TPA) and applying a swept potential to the electrode, ECL response was generated which realized the detection of target protein. Spectroscopy and electrochemical impedance techniques were used to characterize and confirm the fabrication of the ECL aptasensor. AuNPs amplification and smart sensor fabrication art were implemented for the sensitive and cost-effective detection purpose. Signal-to-dose curve excellently followed a sandwich format equation and could be used to quantify the protein, and the detection limit was estimated to be 10 nM. Other forms of thrombin such as β- and γ-thrombins had negligible response, which indicated a high specificity of α-thrombin detection. The aptasensor opened up new fields of aptamer applications in ECL domain, a highly sensitive technique, and had a promising perspective to be applied in microarray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号