首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To fine-tune the design of optimized donor ligands for nuclear waste actinide selective extraction, both electronic and molecular structures of the actinide complexes that are formed must be investigated. In particular, to achieve the selective complexation of transplutonium 3+ ions versus lanthanide 3+ ions is one of the major challenges, given the chemical similarities between these two f-element families. In this work, the structure of solvent-phase M(NO3)3(TEMA)2 complexes (Ln = Nd, Eu, Ho, Yb, Lu, Am; TEMA = N,N,N',N'-tetraethylmalonamide) was investigated by liquid-phase spectroscopic methods among which extended X-ray absorption fine structure played a major role. In addition, the crystal structures of the species Nd(NO3)3(TEMA)2 and Yb(NO3)3(TEMA)2 have been determined by X-ray diffraction. Nd(NO3)3(C11N2O2H22)2 crystallizes in the monoclinic system (P2(1) space group; a = 11.2627(4) A, b = 20.5992(8) A, c = 22.2126(8) A; alpha = gamma = 90 degrees, beta = 102.572(1) degrees; Z = 6), and Yb(NO3)3(C11N2O2H22)2 crystallizes in the orthorhombic system (P2(1)2(1)2(1) space group; a = 9.3542(1) A, b = 18.1148(2) A, c = 19.7675(2) A; alpha = beta = gamma = 90 degrees; Z = 4). In the solvent phase, the metal polyhedron was found to be similar to that of the solid-state complex Nd(NO3)3(TEMA)2 for M = Nd to Ho. For M = Yb and Lu, a significant elongation of one nitrate oxygen bond was observed. Comparison with measurements on the Am(NO3)3(TEMA)2 complex in ethanol has shown the similarities between the Nd3+ and Am3+ coordination spheres.  相似文献   

2.
3.
The structure of the extraction complexes of light lanthanides (La(III), Nd(III), Eu(III)) with bis(2,4,4-trimethylpentyl)dithiophosphinic acid (HBTMPDTP) have been characterized with extended X-ray absorption fine structure spectroscopy (EXAFS), IR, and MS; the IR spectrum of the extraction complex of (241)Am with HBTMPDTP has been studied too. The molecular formula of the extraction complexes of lanthanides is deduced to be HML(4).H(2)O (M = La, Nd, Eu; L = anion of HBTMPDTP). The coordination number of Ln(III) in the complexes is 8; the coordinated donor atoms are 7 sulfur atoms from 4 HBTMDTP molecules and 1 O atom from a hydrated water molecule. With the increase of the atomic number of Ln, the coordination bond lengths of Ln-O and Ln-S decrease in the complexes. For La(III), Nd(III), and Eu(III), the coordination bond lengths of Ln-O are 2.70, 2.56, and 2.50, respectively, the coordination bond lengths of Ln-S are 3.01, 2.91, and 2.84, respectively, and the average distances between Ln and P atoms are 3.60, 3.53, and 3.46, respectively. The structure of the extraction complexes of Ln(III) with HBTMDTP is different from that of the Am(III) extraction complex. The results of IR show that there is no water coordinated with Am in the extraction complex. The molecular formula of the complex of Am(III) is deduced as being HAmL(4), and there are 8 S atoms from 4 HBTMPDTP molecules coordinated with Am. Composition and structure differences of the extraction complexes may be one of the most most important factors affecting the excellent selectivity of HBTMPDTP for Am(III) over Ln(III).  相似文献   

4.
在乙醇体系中,以氯化铕与1,2邻苯二氧基二乙酸和二苯甲酰甲烷反应合成了三元配合物Eu-BDDA-DBM以及弱荧光离子La3+,Y3-,Yb3-和Nd3+掺杂的铕配合物.通过红外、紫外-可见、热重、荧光光谱对配合物进行了表征.红外光谱表明,单一配合物和掺杂配合物具有相似的配位结构.荧光光谱表明,La3+和Nd3+离子掺杂可以大幅度提高的铕配合物的荧光强度,其中La3+掺杂荧光强度增强最明显.  相似文献   

5.
采用高温固相法合成了一系列的(Y0.95Ln0.01Ce0.04)3Al5O12(简称YAG∶Ce,Ln), 系统地研究了此体系中的Ln3+对Ce3+的发光强度的影响. 结果表明, 在YAG∶Ce的体系中, La3+, Gd3+, Lu3+等光学透明离子的少量掺杂对Ce3+的发光强度的影响不大; 掺入少量的Pr3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+等稀土离子, 由于它们的能级与Ce3+的能级有交叠, 使它们之间存在着竞争吸收或能量转移, 对Ce3+的发光有较明显的变化, 其中, Pr3+和Sm3+的掺入使其在红光区有发射峰, 可以增加YAG∶Ce的红色成分以提高显色性; Nd3+, Eu3+和Yb3+对Ce3+的发光有严重的猝灭作用.  相似文献   

6.
Fourteen three-dimensional coordination polymers of general formula [Ln(lNO)(H2O)(SO4)]n, where Ln = La, 1.La; Ce, 2.Ce; Pr, 3.Pr; Nd, 4.Nd; Sm, 5.Sm; Eu, 6.Eu; Gd, 7.Gd; Tb, 8.Tb; Dy, 9.Dy; Ho, 10.Ho; Er. 11.Er; Tm, 12.Tm; Yb, 13.Yb; and Lu, 14.Lu; INO = isonicotinate-N-oxide, have been synthesized by hydrothermal reactions of Ln3+, MnCO3, MnSO4 x H2O, and isonicotinic acid N-oxide (HINO) at 155 degrees C and characterized by single-crystal X-ray diffraction, IR, thermal analysis, luminescence spectroscopy, and the magnetic measurement. The structures are formed by connection of layer, chain, or dimer of Ln-SO4 by the organic connector, INO. They belong to three structural types that are governed exclusively by the size of the ions: type I for the large ions, La, Ce, and Pr; type II for the medium ions, Nd, Sm, Eu, Gd, and Tb; and type III for the small ions, Dy, Ho, Er, Tm, Yb, and Lu. Type I consists of two-dimensional undulate Ln-sulfate layers pillared by INO to form a three-dimensional network. Type II has a 2-fold interpenetration of "3D herringbone" networks, in which the catenation is sustained by extensive pi-pi interactions and O-H...O and C-H...O hydrogen bonds. Type III comprises one-dimensional chains that are connected by INO bridges, resulting in an alpha-Po network. The progressive structural change is due to the metal coordination number decreasing from nine for the large ions via eight to seven for the small ions, demonstrating clearly the effect of lanthanide contraction. The sulfate ion acts as a micro4- or micro3-bridge, connecting two, three, or four metals, and is both mono- and bidentate. The INO ligand acts as a micro3- or micro2-bridge with carboxylate group in syn-syn bridging or bidentate chelating mode. The materials show considerably high thermal stability. The magnetic properties of 4.Nd, 6.Eu, 7.Gd, and 13.Yb and the luminescence properties of 6.Eu and 8.Tb are also investigated.  相似文献   

7.
The hydrothermal reactions of trivalent lanthanide and actinide chlorides with 1,2-methylenediphosphonic acid (C1P2) in the presence of NaOH or NaNO(3) result in the crystallization of three structure types: RE[CH(2)(PO(3)H(0.5))(2)] (RE = La, Ce, Pr, Nd, Sm; Pu) (A type), NaRE(H(2)O)[CH(2)(PO(3))(2)] (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy; Am) (B type), or NaLn[CH(2)(PO(3)H(0.5))(2)]·(H(2)O) (Ln = Yb and Lu) (C type). These crystals were analyzed using single crystal X-ray diffraction, and the structures were used directly for detailed bonding calculations. These phases form three-dimensional frameworks. In both A and B, the metal centers are found in REO(8) polyhedra as parts of edge-sharing chains or edge-sharing dimers, respectively. Polyhedron shape calculations reveal that A favors a D(2d) dodecahedron while B adopts a C(2v) geometry. In C, Yb and Lu only form isolated MO(6) octahedra. Such differences in terms of structure topology and coordination geometry are discussed in detail to reveal periodic deviations between the lanthanide and actinide series. Absorption spectra for the Pu(III) and Am(III) compounds are also reported. Electronic structure calculations with multireference methods, CASSCF, and density functional theory, DFT, reveal localization of the An 5f orbitals, but natural bond orbital and natural population analyses at the DFT level illustrate unique occupancy of the An 6d orbitals, as well as larger occupancy of the Pu 5f orbitals compared to the Am 5f orbitals.  相似文献   

8.
Formation thermodynamics of binary and ternary lanthanide(III) (Ln = La, Ce, Nd, Eu, Gd, Dy, Tm, Lu) complexes with 1,10-phenanthroline (phen) and the chloride ion have been studied by titration calorimetry and spectrophotometry in N,N-dimethyl-formamide (DMF) containing 0.2 mol-dm–3 (C2H5)4NClO4 as a constant ionic medium at 25°C. In the binary system with 1,10-phenanthroline, the Ln(phen)3+ complex is formed for all the lanthanide(III) ions examined. The reaction enthalpy and entropy values for the formation of Ln(phen)3+ decrease in the order La > Ce > Nd, then increase in the order Nd < Eu < Gd < Dy, and again decrease in the order Dy > Tm > Lu. The variation is explained in terms of the coordination structure of Ln(phen)3+ that changes from eight to seven coordination with decreasing ionic radius of the metal ion. In the ternary Ln3+-Cl-phen system, the formation of LnCl(phen)2+, LnCl2(phen)+, and LnCl3(phen) was established for cerium(III), neodymium(III), and thulium(III), and their formation constants, enthalpies, and entropies were obtained. The enthalpy and entropy values are also discussed from the structural point of view.  相似文献   

9.
The geometric and electronic structures of the title complexes have been studied using scalar relativistic, gradient-corrected density functional theory. Extension of our previous work on six-coordinate M[N(EPH 2) 2] 3 (M = La, Ce, U, Pu; E = O, S, Se, Te), models for the experimentally characterized M[N(EP (i)Pr 2) 2] 3, yields converged geometries for all of the other 4f and 5f metals studied and for all four group 16 elements. By contrast, converged geometries for nine-coordinate M[N(EPPh 2) 2] 3 are obtained only for E = S and Se. Comparison of the electronic structures of six- and nine-coordinate M[N(EPH 2) 2] 3 suggests that coordination of the N atoms produces only minor changes in the metal-chalcogen interactions. Six-coordinate Eu[N(EPH 2) 2] 3 and Am[N(EPH 2) 2] 3 with the heavier group 16 donors display geometric and electronic properties rather different from those of the other members of the 4f and 5f series, in particular, longer than expected Eu-E and Am-E bond lengths, smaller reductions in charge difference between M and E down group 16, and larger f populations. The latter are interpreted not as evidence of f-based metal-ligand covalency but rather as being indicative of ionic metal centers closer to M (II) than M (III). The Cm complexes are found to be very ionic, with very metal-localized f orbitals and Cm (III) centers. The implications of the results for the separation of the minor actinides from nuclear wastes are discussed, as is the validity of using La (III)/U (III) comparisons as models for minor actinide/Eu systems.  相似文献   

10.
A new class of homoleptic organoamido rare earth complexes [Ln(L(Me) or L(Et))(3)] (Ln = La, Ce, Nd; L(Me/Et) = p-HC(6)F(4)N(CH(2))(2)NMe(2)/Et(2)) exhibiting (Ar)CF-Ln interactions has been isolated from redox-transmetallation/protolysis (RTP) reactions between the free metals, Hg(C(6)F(5))(2) and L(Me/Et)H in tetrahydrofuran, together with low yields of [Ln(L(Me))(2)F](3) (Ln = La, Ce) or [Nd(L(Et))(2)F](2) species, resulting from C-F activation reactions. The structures of the homoleptic complexes have eight-coordinate Ln metals with two tridentate (N,N',F) amide ligands including (Ar)CF-Ln bonds and either a bidentate (N,F) ligand (Ln = La, Ce, Nd; L(Et)) or a bidentate (N,N') ligand (Ln = Nd; L(Me)), in an unusual case of linkage variation. All (Ar)CF-Ln bond lengths are shorter than or similar to the corresponding Ln-NMe(2)/Et(2) bond lengths. In [Ln(L(Me))(2)F](3) (Ln = La, Ce) complexes, there is a six-membered ring framework with alternating F and Ln atoms and the metal atoms are eight-coordinate with two tridentate (N,N',F) L(Me) ligands, whilst [Nd(L(Et))(2)F](2) is a fluoride-bridged dimer.  相似文献   

11.
The reaction of Ln(NO3)3(aq) with K3[Fe(CN)6] or K3[Co(CN)6] and 2,2'-bipyridine in water/ethanol led to eight trinuclear complexes: trans-[M(CN)4(mu-CN)2{Ln(H2O)4(bpy)2}2][M(CN)6].8H2O (M = Fe3+ or Co3+, Ln = La3+, Ce3+, Pr3+, Nd3+, and Sm3+). The structures for the eight complexes [La2Fe] (1), [Ce2Fe] (2), [Pr2Fe] (3), [Nd2Fe] (4), [Ce2Co] (5), [Pr2Co] (6), [Nd2Co] (7), and [Sm2Co] (8) have been solved; they crystallize in the triclinic space group P and are isomorphous. They exhibit a supramolecular 3D architecture through hydrogen bonding and pi-pi stacking interactions. A stereochemical study of the nine-vertex polyhedra of the lanthanide ions, based on continuous shape measures, is presented. No significant magnetic interaction was found between the lanthanide(III) and the iron(III) ions.  相似文献   

12.
Complexes of lanthanoid trinitrates Ln(NO3)3 with 15-crown-5 ether 1 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) and with 18-crown-6 ether 2 (Ln = La, Ce, Pr, Nd) having a 1:1 stoichiometry as well as 4:3 complexes with 2 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) have been synthesized and characterized. All the isolated complexes are solvent free. At 170–220° the 1:1 complexes of 2 are quantitatively transformed into 4:3 complexes. X-Ray powder diagrams of the neodymium complexes with 2 indicate that both the 1:1 and 4:3 complexes are genuine compounds. All the 1:1 complexes show a characteristic IR. absorption band at 875–880 cm?1 absent from both the spectra of the free ligands and of the 4:3 complexes. The spectroscopic properties (IR. and electronic spectra, fluorescence lifetimes) of the complexes and the low magnetic moments of the Ln(III) ions in the complexes with Ln = Ce-Eu are indicative of a strong interaction between the lanthanoid ions and the crown ethers 1 and 2 .  相似文献   

13.
Treating p-sulfonatocalix[4]arene with lanthanide ions, Ln3+ (Ln = Ce, Nd, Sm and Eu), in the presence of [2.2.2]cryptand results in a 2-D bi-layer coordination polymer with axially elongated diprotonated cryptand in the cavity of two p-sulfonatocalix[4]arenes.  相似文献   

14.
在非水体系中首次合成了硝酸稀土(III)的邻香兰素(2-羟基-3-甲氧基苯甲醛)与乙二胺(L^1)、联苯胺(L^2)、邻苯二胺(L^3)和间苯二胺(L^4)的双Schiff碱配合物(1-8)。通过测定红外光谱、摩尔电导、X射线衍射和X射线光电子能谱推断了配合物的结构和键合情况,配合物的中心金属离子与配体中的二个氮原子、二个氧原子和二个硝酸根中的四个氧原子配位,其配位数为8。通过热重及差热分析发现配合物在低于230℃时很稳定,对于同一配体与不同中心金属离子形成的配合物来说,其热稳定性随稀土离子半径的减小而降低。在77K时测试了铕配合物的激发光谱和荧光光谱,观察到Eu^3^+的特征发射峰。  相似文献   

15.
A new fluorescent chemosensor (A18C6-Ox) in which a monoaza-18-crown-6 is linked to a diaryl-1,3,4-oxadiazole fluorophore by a methylene spacer has been synthesized to evaluate binding interaction with the rare earth ions by means of absorption and emission spectrophotometry. Absorption spectra of A18C6-Ox showed a broad band at 289nm and there was no significant change in the presence of Sc3+, La3+, Pr3+, Sm3+, Gd3+, Tb3+, Yb3+ and Lu3+ except for Ce3+ and Eu3+. From the emission spectral change of A18C6-Ox, interaction of the rare earth ions with A18C6-Ox is very strong. The formation of A18C6-Ox complexing with Sc3+, La3+, Pr3+, Sm3+, Gd3+, Tb3+, Yb3+ and Lu3+ leads to an increase in fluorescence intensity of A18C6-Ox, while Ce3+ and Eu3+ ions interact strongly causing fluorescence quenching of A18C6-Ox. In addition, the optimal complexation stoichiometry of the rare earth ions with A18C6-Ox was investigated by the fluorescent titration.  相似文献   

16.
Gas-phase reactions of atomic lanthanide cations (excluding Pm+) have been surveyed systematically with CO2 and CS2 using an inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Observations are reported for reactions with La+, Ce+, Pr+, Nd+, Sm+, Eu+, Gd+, Tb+, Dy+, Ho+, Er+, Tm+, Yb+, and Lu+ at room temperature (295 +/- 2 K) in helium at a total pressure of 0.35 +/- 0.02 Torr. The observed primary reaction channels correspond to X-atom transfer (X = O, S) and CX2 addition. X-atom transfer is the predominant reaction channel with La+, Ce+, Pr+, Nd+, Gd+, Tb+, and Lu+, and CX2 addition occurs with the other lanthanide cations. Competition between these two channels is seen only in the reactions of CS2 with Nd+ and Lu+. Rate coefficient measurements indicate a periodicity in the reaction efficiencies of the early and late lanthanides. With CO2 the observed trends in reactivity across the row and with exothermicity follow trends in the energy required to achieve two unpaired non-f valence electrons by electron promotion within the Ln+ cation that suggest the presence of a kinetic barrier, in a manner much like those observed previously for reactions with isoelectronic N2O. In contrast, no such barrier is evident for S-atom transfer from the valence isolectronic CS2 molecule which proceeds at unit efficiency, and this is attributed to the much higher polarizability of CS2 compared to CO2 and N2O. Up to five CX2 molecules were observed to add sequentially to selected Ln+ and LnX+ cations.  相似文献   

17.
The N-donor complexing ligand 2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine (C5-BPP) was synthesized and screened as an extracting agent selective for trivalent actinide cations over lanthanides. C5-BPP extracts Am(III) from up to 1 mol/L HNO(3) with a separation factor over Eu(III) of approximately 100. Due to its good performance as an extracting agent, the complexation of trivalent actinides and lanthanides with C5-BPP was studied. The solid-state compounds [Ln(C5-BPP)(NO(3))(3)(DMF)] (Ln = Sm(III), Eu(III)) were synthesized, fully characterized, and compared to the solution structure of the Am(III) 1:1 complex [Am(C5-BPP)(NO(3))(3)]. The high stability constant of log β(3) = 14.8 ± 0.4 determined for the Cm(III) 1:3 complex is in line with C5-BPP's high distribution ratios for Am(III) observed in extraction experiments.  相似文献   

18.
Han Y  Li X  Li L  Ma C  Shen Z  Song Y  You X 《Inorganic chemistry》2010,49(23):10781-10787
A series of 3-D lanthanide porous coordination polymers, [Ln(6)(BDC)(9)(DMF)(6)(H(2)O)(3)·3DMF](n) [Ln = La, 1; Ce, 2; Nd, 3], [Ln(2)(BDC)(3)(DMF)(2)(H(2)O)(2)](n) [Ln = Y, 4; Dy, 5; Eu, 6], [Ln(2)(ADB)(3)(DMSO)(4)·6DMSO·8H(2)O](n) [Ln = Ce, 7; Sm, 8; Eu, 9; Gd, 10], {[Ce(3)(ADB)(3)(HADB)(3)]·30DMSO·29H(2)O}(n) (11), and [Ce(2)(ADB)(3)(H(2)O)(3)](n) (12) (H(2)BDC = benzene-1,4-dicarboxylic acid and H(2)ADB = 4,4'-azodibenzoic acid), have been synthesized and characterized. In 1-3, the adjacent Ln(III) ions are intraconnected to form 1-D metal-carboxylate oxygen chain-shaped building units, [Ln(4)(CO(2))(12)](n), that constructed a 3-D framework with 4 × 7 ? rhombic channels. In 4-6, the dimeric Ln(III) ions are interlinked to yield scaffolds with 3-D interconnecting tunnels. Compounds 7-10 are all 3-D interpenetrating structures with the CaB6-type topology structure. Compound 11 is constructed by ADB spacers and trinulcear Ce nodes with a NaCl-type topology structure and a 1.9-nm open channel system. In 12, the adjacent Ce(III) ions are intraconnected to form 1-D metal-carboxylate oxygen chain-shaped building units, [Ln(4)(CO(2))(12)](n), and give rise to a 3-D framework. Moreover, 6 exhibits characteristic red luminescence properties of Eu(III) complexes. The magnetic susceptibilities, over a temperature range of 1.8-300 K, of 3, 6, and 7 have also been investigated; the results show paramagnetic properties.  相似文献   

19.
This report covers studies in trivalent lanthanide complexation by two simple cyclohexanetriols that are models of the two coordination sites found in sugars and derivatives. Several complexes of trivalent lanthanide ions with cis,cis-1,3,5-trihydroxycyclohexane (L(1)()) and cis,cis-1,2,3-trihydroxycyclohexane (L(2)()) have been characterized in the solid state, and some of them have been studied in organic solutions. With L(1)(), Ln(L)(2) complexes are obtained when crystallization is performed from acetonitrile solutions whatever the nature of the salt (nitrate or triflate) [Ln(L(1)())(2)(NO(3))(2)](NO(3)) (Ln = Pr, Nd); [Ln(L(1)())(2)(NO(3))H(2)O](NO(3))(2) (Ln = Eu, Ho, Yb); [Ln(L(1)())(2)(OTf)(2)(H(2)O)](OTf) (Ln = Nd, Eu). Lanthanum nitrate itself gives a mixed complex [La(L(1)())(2)(NO(3))(2)][LaL(1)()(NO(3))(4)] from acetonitrile solution while [La(L(1)())(2)(NO(3))(2)](NO(3)) is obtained using dimethoxyethane as reaction solvent and crystallization medium. With L(2)(), Ln(L)(2) complexes have also been crystallized from methanol solution [Ln(L(2)())(2)(NO(3))(2)]NO(3), (Ln = Pr, Nd, Eu). Single-crystal X-ray diffraction analyses are reported for these complexes. Complex formation in solution has been studied for several triflate salts (La, Pr, Nd, Eu, and Yb) with L(1 )()and L(2)(), respectively in acetonitrile and in methanol. In contrast to the solid state, both structures Ln(L) and Ln(L)(2) equilibrate in solution, as was demonstrated by low-temperature (1)H NMR and electrospray ionization mass spectrometry experiments. Competing experiments in complexing abilities of L(1)() and L(2)() with trivalent lanthanide cations have shown that only L(2)() exhibits a small selectivity (Nd > Pr > Yb > La > Eu) in methanol.  相似文献   

20.
本文合成了单硫代二苯甲酰甲烷(HTDBM)和三价希土离子及路易斯碱(Q)的Ln(TDBM)_4QH型配合物(Ln=除Ce外的La~Lu,Q=二乙基胺)。测定了它们的摩尔电导值、红外光谱,可见—紫外光谱,核磁共振谱.观察到配合物是通过硫原子、氧原子同时与Ln~(3+)离子配位.Ln-O键强于Ln-S键。在Nd~(3+)、Pr~(3+)、Ho~(3+)、Er~(3+)离子的该类配合物的可见吸收光谱中发现超灵敏跃迁现象。讨论了题述配合物作为核磁共振化学位移试剂的可能性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号