首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 19 毫秒
1.
李嵩  季世军  孙俊才 《电化学》2004,10(1):81-86
研究了AB2型Laves相贮氢电极合金ZrCr0.4Mn0.2V0.1Co0.1Ni1.2在不同温度下的放电容量、活化、高倍率和自放电等电化学性能.实验表明:25℃下,合金电极经13次循环后其最大放电容量为336mAh/g,在70℃下,仅需4次循环就达到298mAh/g;该合金在70℃,300mA/g电流下的高倍率放电性能比25℃时提高了约16%,但自放电性能却从3%/d下降到17%/d,虽然温度升高,合金的循环性能有所下降,但还是相当稳定的.这主要是因为循环过程中合金表面形成的氧化膜阻碍了合金元素进一步溶解造成的.  相似文献   

2.
系统地研究了Al含量对富Ce储氢合金MmNi_(4-x)Co_(0.7)Mn_(0.3)Al_x(x=0,0.1,0.2,0.3)电极综合电化学性能,尤其是对低温和高倍率性能的影响。在常温下,储氢合金电极放电容量和循环性能均随着Al含量的增加而增加,而高倍率放电性能严重下降。-20℃时,放电容量仍随着Al含量的增加而增加,但在-40℃下放电容量随之严重衰退。电化学动力学结果表明,常温下高Al合金高倍率性能的降低主要是由于电极表面电荷转移过程的恶化;低温-40℃下,Al同时降低了合金电极的表面电催化活性以及体相H扩散能力,严重恶化电极过程动力学,从而导致了高Al合金极低的容量及电压输出。考虑到各电极的综合电化学性能,MmNi_(3.8)Co_(0.7)Mn_(0.3)Al_(0.2)为最佳的成分配比。  相似文献   

3.
温度对贮氢合金MlNi3.75Co0.65Mn0.4Al0.2动力学性能的影响   总被引:2,自引:0,他引:2  
在-20℃~85℃的范围内系统地研究了温度对贮氢合金MINi3.75Co0.65Mn0.4Al0.2动力学性能的影响.结果表明:该贮氢合金电极的电化学反应电阻Rt,欧姆内阻Ro,阴极极化过电位,阳极极化过电位,阳极极化过程中的电化学反应过电位ηa和浓差极化过电位ηa均随温度的升高而减小,该电极的交换电流密度i0,对称因子β和电极中氢的扩散系数D随温度的升高而增大.当放电电流密度较低时,电化学反应是整个电极过程的速度控制步骤;当放电电流密度较高时,氢的扩散是整个电极过程的速度控制步骤;在中等放电电流密度下,电极过程由电化学过程和氢的扩散过程混合控制.该电极中电化学反应过程和氢扩散过程的活化能分别为28.1 kJ·mol-1和19.9 kJ·mol-1.  相似文献   

4.
研究了Mg1-xNdxNi0.5(x=0,0.05,0.1,0.15,0.2)贮氢合金的电化学与动力学性能。电化学测试表明:合金均在1~2次循环后达到最大放电容量,具有良好的活化性能。Nd替代Mg可以改善铸态合金的循环稳定性,并显著提高合金的放电容量,经XRD测试表明,这可能是由于添加Nd后合金由单相结构转变为多相结构,相界面增多的原因。但过量的Nd会导致抗腐蚀性减弱从而降低电化学容量保持率;动力学测试表明:随着Nd含量的增加,合金的高倍率放电(HRD)性能先增大后减小,这与交流阻抗测试和氢扩散系数的结果吻合良好,说明适量Nd替代明显提高了合金的高倍率放电能力,有效改善了Mg2Ni型合金的贮氢动力学性能。当x=0.15时合金不仅具有较高的放电容量且显示了良好的动力学性能。  相似文献   

5.
系统地研究了Al含量对富Ce储氢合金MmNi4-xCo0.7Mn0.3Alxx=0,0.1,0.2,0.3)电极综合电化学性能,尤其是对低温和高倍率性能的影响。在常温下,储氢合金电极放电容量和循环性能均随着Al含量的增加而增加,而高倍率放电性能严重下降。-20℃时,放电容量仍随着Al含量的增加而增加,但在-40℃下放电容量随之严重衰退。电化学动力学结果表明,常温下高Al合金高倍率性能的降低主要是由于电极表面电荷转移过程的恶化;低温-40℃下,Al同时降低了合金电极的表面电催化活性以及体相H扩散能力,严重恶化电极过程动力学,从而导致了高Al合金极低的容量及电压输出。考虑到各电极的综合电化学性能,MmNi3.8Co0.7Mn0.3Al0.2为最佳的成分配比。  相似文献   

6.
系统地研究了Al含量对富Ce储氢合金MmNi4-xCo0.7Mn0.3Alxx=0,0.1,0.2,0.3)电极综合电化学性能,尤其是对低温和高倍率性能的影响。在常温下,储氢合金电极放电容量和循环性能均随着Al含量的增加而增加,而高倍率放电性能严重下降。-20℃时,放电容量仍随着Al含量的增加而增加,但在-40℃下放电容量随之严重衰退。电化学动力学结果表明,常温下高Al合金高倍率性能的降低主要是由于电极表面电荷转移过程的恶化;低温-40℃下,Al同时降低了合金电极的表面电催化活性以及体相H扩散能力,严重恶化电极过程动力学,从而导致了高Al合金极低的容量及电压输出。考虑到各电极的综合电化学性能,MmNi3.8Co0.7Mn0.3Al0.2为最佳的成分配比。  相似文献   

7.
为了解Pr取代La对La-Mg-Ni系(AB3.5型)储氖合金性能的影响,研究了La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0.0~0.2)储氢合金电化学性能,重点考察了其电化学动力学特性.试验表明,Pr取代La使合金的储氢容量有所降低,但循环稳定性没有明显的变化.Pr取代La对合金的电化学动力学性能产生了明显的影响,随Pr的添加,合金电极在放电电流密度为1800 mA·g-1的高倍率放电能力(HRD)从26.0%(x=0.0)显著地增加到60.0%(x=0.1),然后缓慢减小到55.8%(x=0.2).电化学阻抗谱、线性极化曲线、阳极极化曲线及氢扩散系数测量结果均表明,合金中添加Pr改善了合金电极的电化学动力学特性.  相似文献   

8.
在-20℃~85℃的范围内系统地研究了温度对贮氢合金MINi~3~.~7~5Co~0~.~6~5Mn~0~.~4Al~0~.~2动力学性能的影响。结果表明:该贮氢合金电极的电化学反应电阻R~t,欧姆内阻R~0,阴极极化过电位,阳极极化过电位,阳极极化过程中的电化学反应过电位η~a和浓差极化过电位η~c均随温度的升高而减小,该电极的交换电流密度i~0,对称因子β和电极中氢的扩散系数D随温度的升高而增大。当放电电流密度较低时,电化学反应是整个电极过程的速度控制步骤;当放电电流密度较高时,氢的扩散是整个电极过程的速度控制步骤;在中等放电电流密度下,电极过程由电化学过程和氢的扩散过程混合控制。该电极中电化学反应过程和氢扩散过程的活化能分别为28.1kJ.mol^-^1和19.9kJ.mol^-^1。  相似文献   

9.
研究了碳纳米管(CNTs)氮气热处理后结构的变化, 以及热处理温度对CNTs-LaNi5电极电化学性能的影响. CNTs热处理后, 管壁变薄, 层数变少, 管的外径减小, 更有利于氢气的吸附和脱附. 将碳纳米管与LaNi5储氢合金按质量比1:10混合, 制作成CNTs-LaNi5电极. 800 ℃时CNTs-LaNi5电极的储氢性能最好, 最大容量为519.1 mAh•g-1, 相应的平台电压高达1.19 V. 在500~600 ℃范围内, 随着温度升高, 放电容量有较大幅度的增加; 在600~800 ℃范围内, 随着温度升高, 放电容量有较小幅度的增加; 但到900 ℃时, 放电容量反而下降. 由此可见, CNTs的热处理温度对CNTs-LaNi5电极的电化学储氢性能有着较大的影响. 纯LaNi5电极的放电容量仅为265.6 mAh•g-1, 平台电压仅为0.83 V. 添加了碳纳米管的CNTs-LaNi5电极的电化学活性高于纯LaNi5电极.  相似文献   

10.
微包覆钴贮氢合金电极电化学性能的研究   总被引:8,自引:0,他引:8  
以化学镀钴方法微包覆处理贮氢合金,用交流阻抗、循环伏安以及模拟电池充放电实验研究了该贮氢合金电极的电化学性能.结果表明,贮氢合金经包覆钴后,即可减小电极表面的电化学反应阻抗,提高其催化活性,并降低充放电过程的极化,从而增大了电极的放电容量和充电效率.相关的电极过程为扩散控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号