首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Sorption of methylene chloride by poly(ether ether ketone) (PEEK) has been studied for both amorphous and highly crystalline polymer. After the determination of sorption and desorption curves, the crystallinity of the two materials after desorption was determined both by density and X-ray measurements. The experimental results indicate the existence of solvent-induced crystallization in initially amorphous PEEK and a virtual lack of this process in highly crystalline PEEK. In the latter case, the observed density increase is attributed to solvent compression and a decrease in free volume. The mechanical behavior of both PEEKs is consistent with their crystallinity levels. The mechanical behavior of both PEEKs before and after sorption allows us to discern the separate effects of the two processes to which the presence of methylene chloride in PEEK gives rise, i.e., plasticization and solvent-induced crystallization. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Sulfonated poly(ether ether ketone) (PEEK) was prepared by sulfonation of commercial Victrex@ PEEK and degree of sulfonation was found to be about 44.5% by 1H NMR. Sulfonated PEEK/polyaniline composite membranes, in order to prevent methanol crossover, were prepared by chemical polymerization of a thin layer of polyaniline (PANI) in the presence of a high oxidant concentration on a single face modification. FTIR and PANI coating density studies confirmed the loading of PANI in sulfonated PEEK membrane matrix. PANI composite membranes with different polymerization time were prepared and subjected to thermogravimetric analysis as well as electrochemical and methanol permeability study to compare with sulfonated PEEK and Nafion 117 membrane. Ion-exchange capacity, water uptake, proton transport numbers and proton conductivities for different PANI composite sulfonated PEEK (SPEEK) membranes were found to be dependent on the coating density of the PANI in the membrane matrix and were slightly lower than that of Nafion 117 membrane. Methanol permeability of these membranes (especially SPEEK/PANI-1.5) was about four times lower than Nafion 117 membrane. Among the all SPEEK membranes synthesized in this study, SPEEK-1.5 appears to be more suitable for direct methanol fuel cell (DMFC) application considering optimum physicochemical and electrochemical properties, thermal stability as well as very low methanol permeability. Above all, the cost-effective and simple fabrication technique involved in the synthesis of such composite membranes makes their applicability quite attractive.  相似文献   

3.
The effects of crystallinity, orientation, and short-fiber filler on the thermal diffusivity D and thermal conductivity K of poly (ether ether ketone) (PEEK) have been studied. Below the glass transition, D increases by less than 10% as the crystallinity increases from 0 to 0.3. For amorphous PEEK, there is an abrupt drop in D at the glass transition (Tg ? 420 K). The drop is less prominent for the 30% crystalline sample and occurs at 20 K higher. At a draw ratio of 2.5, the axial thermal conductivity is 2.3 times higher while the transverse thermal conductivity is 30% lower than that of the unoriented material. For an injection-molded bar of carbon fiber reinforced PEEK, the variation of D with position along the width or thickness direction is found to correlate well with the fiber orientation. By regarding the injection-molded bar as a multidirectional laminate comprising a large number of unidirectional plies, the thermal conductivities along the longitudinal and transverse direction are calculated and found to agree closely with the experimental data. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The dynamic relaxation behavior of solvent-crystallized poly(ether ether ketone) (PEEK) has been investigated in the region of the glass-rubber (α) relaxation using dynamic mechanical and dielectric methods. Amorphous PEEK films were exposed to saturated methylene chloride and acetone vapor, with solvent-induced crystallization observed for both penetrants. Sample desorption at elevated temperatures (under vacuum) resulted in virtually complete removal of residual penetrant, thus providing for the measurement of relaxation characteristics independent of plasticization. Both dynamic mechanical and dielectric studies indicated a marked positive offset in the isochronal relaxation temperatures of the solvent-crystallized samples relative to thermally crystallized specimens of comparable bulk crystallinity, and a higher apparent activation energy in the solvent-crystallized case. These results are consistent with the evolution of a tighter crystalline morphology (i.e., smaller crystal long spacing) in the solvent-crystallized samples, the crystallites imposing a greater degree of constraint on the long-range motions of the amorphous chains inherent to the glass-rubber relaxation. © 1994 John Wiley & Sons, Inc.  相似文献   

5.

New poly(aryl ether ketone)s (PAEKs) with a low melting temperature (relative to PEEK) are of interest in order to simplify the manufacturing of high-performance polymers or composites. In this study, we propose to investigate the physical properties of a new PAEK from Victrex, namely PAEK LM. Combinations of thermal analyses were used as follows: standard and modulated temperature differential scanning calorimetry, dynamic mechanical analysis, dynamic dielectric analysis and guarded hot plate technique. We found that the global mechanical, dielectric and thermal properties are very similar to the PEEK reference. The glass transition temperature was observed in the same range than PEEK (∼ 150 °C) while the melting temperature Tm was measured at 307 °C for PAEK LM which is about 35 °C below the melting temperature of PEEK. The degree of crystallinity of PAEK LM was found to be 27% while for PEEK it is 38%, depending on the processing conditions. This work explored crystalline structure–property relationships to explain the behaviour of PAEK LM.

  相似文献   

6.
Polyetheretherketone (PEEK) is a thermoplastic material with outstanding properties and high potential for biomedical applications, including hermetic encapsulation of active implantable devices. Different biomedical grade PEEK films with initial degree of crystallinity ranging from 8% to 32% (with or without mineral filling) were inspected. PEEK surfaces were treated with nitrogen RF plasma and the effects on materials crystallinity and self‐bonding were evaluated. In particular, the relationship between auto‐adhesive properties and crystalline content of PEEK before and after plasma treatment was examined. PEEK samples showed different bonding strength depending on their degree of crystallinity, with higher self‐bonding performance of mineral‐filled semi‐crystalline films. XRD did not show any modification of the PEEK microstructure as a result of plasma treatment, excluding a significant influence of crystallinity on the self‐bonding mechanisms. Nevertheless, plasma surface treatment successfully improved the self‐bonding strength of all the PEEK films tested, with larger increase in the case of semi‐crystalline unfilled materials. This could be interpreted to the increase in chain mobility that led to interfacial interpenetration of the amorphous phase.  相似文献   

7.
The effect of crosslinks introduced by ion irradiation with 11.7 MeV proton and 30 MeV helium ions on the reactivity of poly(ether‐ether‐ketone) (PEEK) to sulfonation have been investigated following the kinetics of the reaction at room temperature. Concentrated sulfuric acid was used as a swelling and sulfonating agent and the reaction was followed by changes in the FTIR spectrum. The rate of reaction decreased with the degree of crosslinking and the progress with time was consistent with diffusion control of the sulfuric acid into the crosslinked matrix. The results were consistent with the efficiency of the ions in crosslinking PEEK and in particular with the differences in their linear energy transfer (LET). © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 775–783, 2009  相似文献   

8.
聚醚醚酮及其碳纤维复合材料——恒温结晶动力学的研究   总被引:1,自引:1,他引:1  
本文研究了聚醚醚酮(PEEK)和以PEEK树脂为基体的碳纤维复合材料(APC-2)在恒温条件下的结晶行为。采用差示扫描量热仪(DSC)测定从熔体和橡胶体结晶过程中热焓的变化。利用Avrami方程分析了PEEK和APC-2试样的恒温结晶动力学。PEEK从熔体和橡胶体结晶的活化能分别为532.1和531.7KJ/mol,Avrami指数的平均值分别为5.0和3.9;而APC-2则分别为444.2和432.5KJ/mol,3.5和2.3。这些实验结果表明,APC-2试样中碳纤维表面对PEEK树脂基体具有显著的成核作用,能降低其结晶活化能,因而导致PEEK树脂基体结晶速率加快和促进其结晶更加完整。  相似文献   

9.
The effect of shear on the crystallization behavior of the poly(ether ether ketone) (PEEK) has been investigated by means of ex situ wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering, and differential scanning calorimetry (DSC). The changes of the intensity of WAXD patterns along shear direction of the PEEK induced by short‐term shear were observed when the samples crystallized at 330 °C. The results showed that the dimensions of the crystallites perpendicular to the (110) and (111) planes reduced with the increase of shear rate, whereas the dimensions of the crystallites perpendicular to (200) plane increased with the increase of shear rate. Moreover, increasing shear rate can lead to the increase of the crystallinity as well as the average thickness of the crystalline layers. Correspondingly, a new melting peak at higher temperature was found during the subsequent DSC scanning when the shear rate was increased to 30 s?1. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 220–225, 2010  相似文献   

10.
可控交联聚醚醚酮的合成与热性能研究   总被引:2,自引:0,他引:2  
聚醚醚酮因其优异的综合性能 (耐热性、耐水解、耐辐射等 )在许多领域得到应用 [1~ 4 ] .但聚醚醚酮的玻璃化转变温度 ( Tg)较低 ( 4 2 6K) ,导致其使用温度较低 (在 5 1 3K以下 ) .为进一步提高聚芳醚酮类材料的使用温度 ,人们在聚醚醚酮主链中引入刚性结构 ,通过提高聚芳醚酮的刚性度来提高聚芳醚酮的熔点 ( Tm)及 Tg,从而提高材料的使用温度 [5,6 ] .文献 [7]中聚芳醚酮的 Tm 已经高达 741 K,但此材料很难加工成型 .通常热塑性材料具有优异的加工性能 ,但使用温度较低 .热固性材料的使用温度较高 ,但在加工固定尺寸形状铸件时存在困…  相似文献   

11.
Two types of antioxidants(a primary antioxidant and a secondary antioxidant) were used to improve the stability of poly(ether ether ketone)(PEEK). The effects of the antioxidants on the properties of PEEK and the stabilization mechanism were investigated by some characterization methods, such as rheometer, thermogravimetric ana- lysis(TGA), universal tester and electron spin resonance(ESR). The results indicate that the efficiency of the phosphorous antioxidant(DS) in improving the stability of PEEK was better than that of the phenolic antioxidant(DN) in both melting stability and thermal stability, and the thermal stability of PEEK sample containing 0.07%(mass fraction) DS was the best among all the samples due to the decrease of the free radicals density, as proven by ESR measurement. Additionally, no obvious changes could be observed in mechanical properties of PEEK containing antioxidants compared to those of virgin PEEK.  相似文献   

12.
Photo-grafting of hydrophilic monomer was used to enhance the hydrophilicity of poly(ether ether ketone) (PEEK) with the aim of extending its applications to biological fields. PEEK sheets were surface modified by grafting of acrylamide(AAm) with ultraviolet(UV) irradiation in the presence or absence of benzophenone(BP). The effects of BP, irradiation time and monomer concentration on the surface wettability of PEEK were investigated. Characterization of modified PEEK using scanning electron microscopy(SEM), energy-disperse spectrometer(EDS) and water contact angle measurements shows that AAm was successfully grafted on PEEK surface both in presence and absence of BP. With the increase in irradiation time and monomer concentration, contact angles decrease to as low as 30°, demonstrating a significant improvement of surface hydrophilicity. In agreement with the decrease in contact angle, under identical conditions, the nitrogen concentration increases, suggesting the increase in grafting degree of the grafting polymerization. This investigation demonstrates a self-initiation of PEEK due to its BP-like structure in the backbone of the polymer. Though the graft polymerization proceeds more readily in the presence of BP, the self-initiated graft polymerization is clearly observed.  相似文献   

13.
采用紫外光接枝法对聚醚醚酮(PEEK)表面进行化学修饰和生物分子固定化.首先向PEEK表面引入亲水性的丙烯酰胺,并以此为反应位点通过戊二醛将胶原和胶原蛋白固定在PEEK表面.用接触角测定仪、扫描电镜、荧光标记和X射线光电子能谱等对改性薄膜进行了表征.结果表明,PEEK上丙烯酰胺的接枝密度高达50.9μg/cm~2;改性薄膜表面浸润性显著提高,水接触角最低降至(22±3)°.荧光标记胶原固定的PEEK薄膜荧光发射光谱强度最高,并在X射线光电子能谱中检测到N元素,表明胶原已固定化,固定胶原蛋白的浓度为10.2μg/cm~2.  相似文献   

14.
The relationship between semicrystalline morphology and glass transition temperature has been investigated for solvent-crystallized poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK). Solvent-crystallized specimens of both PEEK and PEKK displayed a sizeable positive offset in Tg compared to quenched amorphous specimens as well as thermally crystallized specimens of comparable bulk crystallinity; the offset in Tg for the crystallized samples reflected the degree of constraint imposed on the amorphous segments by the crystallites. Small-angle X-ray scattering studies revealed markedly smaller crystal long periods (d) for the solvent-crystallized specimens compared to samples prepared by direct cold crystallization. The strong inverse correlation observed between Tg and interlamellar amorphous thickness (lA) based on a simple two-phase model was in excellent agreement with data reported previously for PEEK, and indicated the existence of a unique relationship between glass transition temperature and morphology in these poly(aryl ether ketones) over a wider range of sample preparation history and lamellar structure than was previously reported. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 65–73, 1998  相似文献   

15.
Photo-grafting of hydrophilic monomer and space arms was used to enhance the hydrophilicity of poly(ether ether ketone)(PEEK) with the aim of extending its application to biological fields. PEEK films were surface modified by UV grafting of acrylic acid(AA) to introduce ―COOH on PEEK surface. Adipic amine was used as a space arm to introduce heparin on PEEK surface based on the condensation reaction between ―NH2 and ―COOH. The modified PEEK(PEEK-COOH, PEEK-NH2 and PEEK-Hep) was characterized by energy-disperse spectroscopy (EDS), X-ray photoelectron spectroscopy(XPS) and water contact angle measurements, which show that heparin was grafted on PEEK surface. The contact angles of modified PEEK films were lower than those of original films, demonstrating a significant improvement of surface hydrophilicity.  相似文献   

16.
The thermal stability of a short carbon-fiber-reinforced PEEK composite was assessed by thermogravimetry and by a Rheometrics dynamic analyzer. The results indicated that holding for 10 min at 380°C was a suitable melting condition to avoid the thermooxidative degradation under air. After proving that the heating rate of 50°C/min can be used to evaluate the crystallinity, a heating stage was used to prepare nonisothermally crystallized specimens using cooling rates from 1 to 100°C/min after melting at 400°C for 3 or 15 min. The degree of crystallinity and the melting behavior of these specimens were investigated by DSC at a heating rate of 50°C/min. The presence of three or four regions indicated that the upper melting temperature, Tm, changed with the crystallization temperature. The first region with the highest Tm, which corresponded to the cooling rate of 1°C/min, can be associated with the crystallization in regime II. There was a second region where Tm decreased as the amount of crystals formed in regime II decreased with increasing cooling rate from 5 to 20°C/min. The third region, a plateau region, corresponded to regime III condition in which the crystals were imperfect. In the fourth region, the cooling was so fast that crystallization was incomplete during the cooling for the melting condition of 400°C for 15 min. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2225–2235, 1998  相似文献   

17.
Dynamic rheological measurements were carried out on blends of poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) in the melt state in the oscillatory shear mode. The data were analyzed for the fundamental rheological behavior to yield insight into the microstructure of PEEK/PES blends. A variation of complex viscosity with composition exhibited positive–negative deviations from the log‐additivity rule and was typical for a continuous‐discrete type of morphology with weak interaction among droplets. The point of transition showed that phase inversion takes place at composition with a 0.6 weight fraction of PEEK, which agreed with the actual morphology of these blends observed by scanning electron microscopy. Activation energy for flow, for blend compositions followed additive behavior, which indicated that PEEK/PES blends may have had some compatibility in the melt. Variation of the elastic modulus (G′) with composition showed a trend similar to that observed for complex viscosity. A three‐zone model used for understanding the dynamic moduli behavior of polymers demonstrated that PEEK follows plateau‐zone behavior, whereas PES exhibits only terminal‐zone behavior in the frequency range studied. The blends of these two polymers showed an intermediate behavior, and the crossover frequency shifted to the low‐frequency region as the PEEK content in PES increased. This revealed the shift of terminal‐zone behavior to low frequency with an increased PEEK percentage in the blend. Variation of relaxation time with composition suggested that slow relaxation of PEEK retards the relaxation process of PES as the PEEK concentration in the blend is increased because of the partial miscibility of the blend, which affects the constraint release process of pure components in the blend. A temperature‐independent correlation observed in the log–log plots of G′ versus loss modulus (G″) for different blend systems fulfilled the necessary condition for their rheological simplicity. Further, the composition‐dependent correlations of PEEK/PES blends observed in a log–log plot of G′ versus G″ showed that the blends are either partially miscible or immiscible and form a discrete‐continuous phase morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1548–1563, 2004  相似文献   

18.
Novel high performance aluminum nitride (AlN)/poly(ether-ether-ketone) (PEEK) composites containing 0-50 wt.% fractions of AlN were prepared by solution blending method followed by hot pressing to evaluate their density, melting temperature, crystallization, thermal stability, morphological behavior and Vickers hardness by using different characterization techniques. Differential scanning calorimetry results indicated that the AlN particles are very effective nucleating agent, which results in increase in melting point, hot crystallization temperature and crystallinity of composites as the AlN content increases. Thermogravimetric analysis showed enhanced thermal stability of the composites with respect to PEEK. Density and X-ray diffraction techniques showed that crystallinity of the composites increases as the wt.% of AlN content increases in polymer matrix. Scanning electron microscopy revealed that AlN particles were well dispersed with no porosity in composites. Vickers hardness of the samples increased from 24 kg/mm2 for the pure PEEK to 35 kg/mm2 for AlN/PEEK composites.  相似文献   

19.
The thermodegradative behaviour of blends of poly(ether ether ketone) (PEEK) and poly(aryl ether sulphone) (PES) was studied by dynamic thermogravimetry in order to analyze their thermal stability. The Freeman-Carrol differential approach was used to determine the kinetic parameters i.e. the apparent activation energy (Ea) and order of reaction (n), of the degradation process. The results indicate that the presence of one component influences the thermal stability of the other. Both, temperature for 5% weight loss (T5) and Ea for blends show a negative deviation from the linear behaviour, which signifies a lowering of thermal stability compared to homopolymers. The decrease in the thermal stability at low concentration of PES in PEEK has been explained on the basis of chemical interactions of the degradation products of PES, which has lower induction temperature for degradation, with PEEK and also on the reduction of viscosity of the medium. But the decrease in thermal stability at low concentration of PEEK in PES is unusual and at present, without the complete elucidation of degradation mechanism in these blends, is difficult to explain.  相似文献   

20.
Poly(ether ether ketone) (PEEK)-based polymer electrolyte membranes (PEMs) was successfully prepared by radiation grafting of a styrene monomer into PEEK films and the consequent selective sulfonation of the grafting chains in the film state. Using milder sulfonation, the sulfonation reactions proceeded at the grafted chains in preference to the phenylene rings of PEEK main chains; as a result, the grafted films could successfully transform to a PEM with conductivity of more than 0.1 S/cm. The ion exchange capacity (IEC) and conductivity of the grafted PEEK electrolyte membranes were controlled to the ranges of 1.2–2.9 mmol/g and 0.03–0.18 S/cm by changing the grafting degree. It should be noted that this is the first example of directly transforming super-engineering plastic films into a PEM using radiation grafting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号