首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this study, graft copolymers with regular graft points containing polystyrene (PS) backbone and poly(methyl methacrylate) (PMMA), poly(tert‐butyl acrylate) (PtBA), or poly (ethylene glycol) (PEG) side chains were simply achieved by a sequential double polymer click reactions. The linear α‐alkyne‐ω‐azide PS with an anthracene pendant unit per chain was produced via atom transfer radical polymerization of styrene initiated by anthracen‐9‐ylmethyl 2‐((2‐bromo‐2‐methylpropanoyloxy)methyl)‐2‐methyl‐3‐oxo‐3‐(prop‐2‐ynyloxy) propyl succinate. Subsequently, the azide–alkyne click coupling of this PS to create the linear multiblock PS chain with pendant anthracene sites per PS block, followed by Diels–Alder click reaction with maleimide end‐functionalized PMMA, PtBA, or PEG yielded final PS‐g‐PMMA, PS‐g‐PtBA or PS‐g‐PEG copolymers with regular grafts, respectively. Well‐defined polymers were characterized by 1H NMR, gel permeation chromatography (GPC) and triple detection GPC. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Films of polystyrene/poly(methyl methacrylate) (PS/PMMA) blends are obtained from solution after evaporation of the solvent. The degree of mixing of the two polymers is studied using scanning electron microscopy after selective elimination of the PS phase. Using star‐shaped instead of linear PS, an important degree of mixing is observed. This must be attributed to difficult reptation of the star‐shaped chains due to the high number of entanglements between star‐shaped PS and PMMA compared to the entanglements between linear PS and PMMA.  相似文献   

3.
This article reports the study of the effect of relative grafting densities of two polymer chains on solvent-induced self-assembly of mixed poly(methyl methacrylate) (PMMA)/polystyrene (PS) brushes through a combinatorial approach. Gradient-mixed PMMA/PS brushes were synthesized from a gradient-mixed initiator-terminated monolayer by combining atom transfer radical polymerization (ATRP) and nitroxide mediated radical polymerization (NMRP) in a two-step process. The gradient-mixed initiator-terminated monolayer was fabricated by first formation of a gradient in density of an ATRP initiator through vapor diffusion followed by backfilling of an NMRP-initiator-terminated trichlorosilane. After treatment of a gradient-mixed brush whose PS Mn was slightly lower than that of PMMA with glacial acetic acid, a selective solvent for PMMA, relatively ordered nanodomains were observed in the region where the ratio of PS to PMMA grafting density (number of polymer chains/nm2) was in the range from 0.67 to 2.17 and the overall grafting density was approximately 0.85 polymer chains/nm2. Contact angle hysteresis were high (> or =40 degrees ) in this region and XPS studies confirmed that the PMMA chains were enriched at the outermost layer. The nanodomains are speculated to be of a micellar structure with PS chains forming the core shielded by PMMA chains.  相似文献   

4.
This is the first report concerning the use of vinyl polyperoxide, namely, poly(methyl methacrylate) peroxide (PMMAP), as a thermal initiator for the synthesis of active polymer PMMAP‐PS‐PMMAP by free‐radical polymerization with styrene. The polymerizations have been carried out at different concentrations of macroinitiator PMMAP. The active polymers have been characterized by 1H NMR, DSC, thermogravimetric analysis, and gel permeation chromatography. PMMAP‐PS‐PMMAP is further used as the thermal macroinitiator for the preparation of another block copolymer, PMMA‐b‐PS‐b‐PMMA, by reacting the active polymers with methyl methacrylate. The block copolymers have been synthesized by varying the concentrations of the active polymers. The mechanism of block copolymers has been discussed, which is also supported by thermochemical calculations. Studies on the surface texture and morphology of the block copolymer of polystyrene (PS) and PMMA material have been carried out using scanning electron microscopy. Furthermore, in this article, a blend of the same constituent materials (PS and PMMA) in proportions (v/v) similar to that contained in block copolymers has been formulated, and the morphology and surface textures of these materials were also investigated. A comparative microscopical evaluation between two processing methods was done for a better understanding of the processing route dependence of the microstructures. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 546–554, 2001  相似文献   

5.
Block copolymers of hyperbranched polyethylene (PE) and linear polystyrene (PS) or poly(methyl methacrylate) (PMMA) were synthesized via atom transfer radical polymerization (ATRP) with hyperbranched PE macroinitiators. The PE macroinitiators were synthesized through a “living” polymerization of ethylene catalyzed with a Pd‐diimine catalyst and end‐capped with 4‐chloromethyl styrene as a chain quenching agent in one step. The macroinitiator and block copolymer samples were characterized by gel permeation chromatography, 1H and 13C NMR, and differential scanning calorimetry. The hyperbranched PE chains had narrow molecular weight distribution and contained a single terminal benzyl chloride per chain. Both hyperbranched PE and linear PS or PMMA blocks had well‐controlled molecular weights. Slow initiation was observed in ATRP because of steric effect of hyperbranched structures, resulting in slightly broad polydispersity index in the block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3024–3032, 2010  相似文献   

6.
The interfacial behavior of poly(isoprene-b-methyl methacrylate) diblock copolymers (PI-b-PMMA), with similar PMMA blocks but differing in the percentage of PI segments, SP19 (5% PI) and SP38 (52% PI), was studied at the air-water interface. The surface pressure-area (pi-A) isotherms, compression-expansion cycles, and relaxation curves were compared with those of the PMMA homopolymer. The short hydrophobic PI block of SP19 does not contribute to the mean molecular area at low surface pressures and yet has a negative contribution (condensing effect) when the surface pressure increases. On the contrary, the long PI block of SP38 contributes considerably to the surface area from low to high surface pressures. The A-t relaxation curves compare well with those of PMMA at low surface pressures (pi = 2 mN.m-1), but not at intermediate and high pressures (pi = 10, 30 mN.m-1), where a clear dependence on the length of the PI block was observed. The quantitative analysis of the relaxation curves at high pressures shows both a fast and slow component, attributed mostly to the local and middle-to-long-range reorganization of PMMA chains, respectively. PI-b-PMMA diblocks and PMMA were further blended with PS. The PS and PMMA are immiscible at the air-water interface. The addition of PS does not change the pi-A isotherm of PMMA, but the copolymers blended with PS form films that are more condensed at low pressures. The Langmuir-Blodgett (LB) films transferred onto mica substrates were analyzed by atomic force microscopy (AFM). The LB films of single diblocks are uniform, while those of PI-b-PMMA and PMMA blended with PS show aggregates with variable patterns.  相似文献   

7.
PMMA containing 50 wt% of anthracene-labeled PMMA chains end-capped by a phthalic anhydride group (anth-PMMA-anh) has been melt blended at 180°C with PS containing 33 wt% of chains end-capped by an aliphatic primary amine (PS-NH2) and PS bearing 3.5 pendant amine groups (as an average) along the chains (PS-co-PSNH2), respectively. The reactive chains have been synthesized by atom transfer radical polymerization. Conversion of anth-PMMA-anh into PS-b-PMMA and PS-g-PMMA copolymers has been monitored by SEC with a UV detector. The interfacial reaction mainly occurs in the initial melting and softening stage (<1.0 min.), although at a rate which strongly depends on the number of reactive groups attached to PS chains, the higher conversion being observed for the PS-co-PSNH2 containing blends. The phase morphology depends on the architecture of the in-situ formed copolymer. Indeed, a coarser phase dispersion is observed in case of the graft copolymer compared to the diblock.  相似文献   

8.
ABSTRACT

We have studied the alignment and molecular organisation within a thin film of the popular nematic 5CB sandwiched between two flat polymer slabs, examining the effect of polymer chemical nature and morphology with atomistic molecular dynamics simulations. We have chosen two common polymers: polystyrene (PS) and polymethylmethacrylate (PMMA), either with their chains in random coil conformation (disordered) or with chains unidirectionally stretched (ordered). We found that, independently on the arrangement of the chains, both surfaces align planarly the liquid crystal, in accord with experimental observation. Moreover, while 5CB molecules align along the chains stretching direction of the PMMA ordered surface, on the combed PS surface they arrange on average perpendicularly to the stretching direction. This behaviour is attributed to the chemically specific interactions between the respective aromatic moieties of PS and 5CB.  相似文献   

9.
采用封管反应的方法,以较高产率(80%以上)合成了一系列含环氧基团的可交联PMMA型和PS型极化聚合物材料,该材料具有很好的成膜性.用DSC和TgA等方法研究了聚合物固化前后的热性能,结果表明,由于聚合物在极化后期经热固化使引入的环氧基团开环交联,聚合物的玻璃化转变温度(Tg)较固化前明显提高30~50K.同时,固化后的聚合物具有较高的热分解温度(Td>543K).对聚合物的二阶非线性光学性质的测试结果表明,在室温下放置100h后,聚合物的电光系数r33值均保持在初始值的75%以上.这是由于环氧基团的开环使固化后的聚合物本身产生一定程度的交联,导致取向后的发色团被聚合物的交联网禁锢而不易弛豫,从而使这类PMMA型和PS型二阶非线性聚合物材料的热稳定性能得以提高.  相似文献   

10.
AB_2型星形杂臂偶氮液晶聚合物的合成及表征   总被引:1,自引:1,他引:1  
通过原子转移自由基聚合(ATRP)与ATRP衍生物化学修饰结合的方法,合成了一系列AB2型星形杂臂偶氮液晶聚合物.其中,A为聚苯乙烯,B为聚6-[4-(4′-甲氧基苯基)偶氮苯氧基己酯](PMMAZO).合成分三步进行.首先,以ATRP方法得到ω-溴聚苯乙烯活性链PS(Br).然后对PS(Br)进行化学改性,得到带两个末端溴原子的聚苯乙烯活性链PS(Br)2·最后,以PS(Br)2作为双官能团大分子引发剂,引发6-[4-(4′-甲氧基苯基)偶氮苯氧基]己酯(MMAZO)发生ATRP聚合,得到星形杂臂PS(PMMAZO)2聚合物.进一步对聚合产物进行了GPC和1H-NMR分析.结果表明合成产物是预期的星形杂臂聚合物,产物分子量可控且分子量分布狭窄.同时,以DSC和POM表征了星形杂臂聚合物的液晶性.  相似文献   

11.
This paper reports the investigation of the nanostructured surface morphology of linear polystyrene-block-polyisobutylene-block-polystyrene (SIBS) triblock copolymers and novel arborescent SIBS block copolymers by Atomic Force Microscopy (AFM) in the tapping mode. Thin films spin coated from toluene onto silicon wafers were studied. The nanostructured morphology of the block copolymers varied with the hard polystyrene (PS) and soft polyisobutylene (PIB) segment composition, ranging from spherical to lamellar nanometer-sized discreet PS phases dispersed in a continuous PIB matrix. Annealing the samples resulted in well developed/ordered structures. The arborescent blocks had irregularly distributed PS phases in the PIB matrix. Annealing had a dramatic effect on the morphology which still remained irregular. Three-dimensional AFM image and section analysis indicated the presence of a height difference between PIB (high-lying plateaus or hills) and PS (low-lying plateaus or valleys) in the block copolymers, which became more prominent during annealing. It is theorized that the rubbery PIB chains are able to relax, thereby protruding from the surface, anchored by the physically crosslinked PS phases.  相似文献   

12.
The elucidation of protein adsorption behavior on polymeric surfaces is very important, since their use as arrays and carriers of biomolecules is ever growing for a wide variety of bioapplications. We evaluate protein adsorption characteristics on chemically homogeneous and heterogeneous polymeric surfaces by employing polystyrene-block-polymethylmethacrylate (PS-b-PMMA) diblock copolymer, PS homopolymer, PMMA homopolymer, and PS/PMMA blend as protein templates. We also investigate distance-dependent protein adsorption behavior on the interfacial region between PS and PMMA. We observe selective protein adsorption exclusively onto PS areas for the chemically heterogeneous PS-b-PMMA and PS/PMMA blend templates. On blend films, protein adsorption is highly favored on the PS regions located near the PS:PMMA interface over that on the PS areas situated away from the interface. Protein density on PS domains is inversely proportional to the separation distance between two neighboring PS:PMMA interfaces. We also observe a higher protein density on the PS-b-PMMA than on the PS or PMMA homopolymer templates. This effect is due to the fact that chemically heterogeneous PS-b-PMMA presents periodically spaced PS:PMMA interfaces on the nanometer scale, whereas no such interfaces are present on homopolymer films. The density of protein molecules on the heterogeneous PS-b-PMMA surface is approximately 3-4-fold higher than on the homogeneous PS surface for the identical experimental conditions. These results demonstrate that self-assembling, chemically heterogeneous, nanoscale domains in PS-b-PMMA diblock copolymers can be used as excellent, high-payload, high-density protein templates. The unique advantages of the diblock copolymer may prove the spontaneously constructed protein nanotemplates to be highly suitable as functional substrates in many proteomics applications.  相似文献   

13.
Wear studies were performed on polystyrene (PS)-poly(acrylic acid) (PAA) mixed polymer brushes and corresponding monobrushes in a dried state. The aim was to study the wear mechanism in polymer brush surfaces as well as to investigate the effect of switching of PS + PAA binary brush surfaces (on treatment with the selective solvents for the PS and PAA) on the wear process. Wear experiments were carried out using atomic force microscopy (AFM) under a controlled environment. The wear experiments were performed as a function of scan number using a sharp silicon nitride tip to induce the wear on the sample surfaces. The wear mechanism on different brush surfaces was influenced by molecular entanglement as well as adhesion and friction on the sample surface. The wear process on the PS monobrush surface treated with toluene took place via formation of the ripples. On the other hand, a typical wear mode observed on the PAA monobrushes was removal of the polymeric material from the surface. For the mixed brush surface treated with toluene (selective solvent for PS) where PS chains dominated the top of the sample surface, the typical wear mode observed was ripple formation similar to that observed for the PS monobrushes. However, when a mixed brush was treated with ethanol and pH 10 water so that PAA chains dominated the top layer, wear occurred via removal of material. The amount of wear on the surfaces increased with the number of scans. Furthermore, the load and scan velocity dependence of the wear process was also investigated. Wear on polymer brush surfaces increased on increasing the load and/or decreasing the scan speed. The present study shows that wear can be controlled/tuned using mixed responsive brushes.  相似文献   

14.
A series of comb-like poly(phenylene oxide)s (PPO) graft copolymers with controlled grafting density and length of grafts were synthesized by atom transfer radical polymerization (ATRP). The α-bromo-poly(2,6-dimethyl-1,4-phenylene oxide)s (BPPO) were used as macroinitiators to polymerize vinyl monomers and the graft copolymers carrying polystyrene (PS), poly(p-acetoxystyrene) (PAS), and poly(methyl methacrylate) (PMMA) as side chains were synthesized and characterized by NMR, FTIR, GPC, DSC and TGA. The composition-dependent glass-transition temperatures (Tg) of PPO-g-PS exhibited good correlation with theoretical curve in Couchman equations except for the cases of low PS content (<40 mol%) copolymers in which a positive deviation was observed due to enhanced molecular interactions. The increase in monomer/initiator ratio led to the increase of degree of polymerization and the decrease of polydispersity. Despite the immiscibility nature between PPO and PMMA, the PPO-g-PMMA exhibited enhanced compatibilization as apparent single Tg in a wide temperature window throughout various compositions revealing an efficient segmental mixing on a molecular scale due to grafting structure.  相似文献   

15.
Heteroarm H‐shaped terpolymers, (polystyrene)(poly(methyl methacrylate))‐ poly(tert‐butyl acrylate)‐(polystyrene)(poly(methyl methacrylate)), (PS)(PMMA)‐PtBA‐(PMMA)(PS), and, (PS)(PMMA)‐poly(ethylene glycol)(PEG)‐(PMMA)(PS), through click reaction strategy between PS‐PMMA copolymer (as side chains) with an alkyne functional group at the junction point and diazide end‐functionalized PtBA or PEG (as a main chain). PS‐PMMA with alkyne functional group was prepared by sequential living radical polymerizations such as the nitroxide mediated (NMP) and the metal mediated‐living radical polymerization (ATRP) routes. The obtained H‐shaped polymers were characterized by using 1H‐NMR, GPC, DSC, and AFM measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1055–1065, 2007  相似文献   

16.
A new synthetic methodology is developed for preparing graft copolymers via RAFT polymerization method by the “R group approach” onto styrenic polymers. In this approach, latent sites of the styrenic polymer was brominated first and then converted into macro‐RAFT agents with pyrazole and thio dodecyl as the Z groups. This was used to synthesize graft copolymer such as polystyrene‐graft‐polymethyl methacrylate (PS‐g‐PMMA), polystyrene‐graft‐poly(isobornyl acrylate), polystyrene‐graft‐poly[2‐(acetoacetoxy)ethyl methacrylate] (PS‐g‐PAEMA), and poly(para‐methoxystyrene)‐graft‐polystyrene (P(p‐MS)‐g‐PS). The polymers are characterized by gel permeation chromatography, 1H NMR, IR, and atomic force microscopy (AFM). The morphology of PS‐g‐PMMA in THF was investigated using AFM and island‐like features were noticed. The AFM studies of the PS‐g‐PAEMA graft copolymers revealed the formation of globules and ribbon‐like morphological features. The PS‐g‐PAEMA graft copolymers form complex with Fe(III) in dimethylformamide and the AFM studies suggest the formation of globular superstructures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
A novel route to synthesize catenated macrocyclic PS–PMMA block copolymers is demonstrated via combination of supramolecular chemistry and controlled radical polymerization (CRP). Polymerization of styrene with bromopropionate ester initiator coupled with phenanthroline Cu(I) complex affords a four arm PS macroinitiator, which upon further chain extension by polymerization of MMA generates a four arm PS–PMMA block copolymer. Intramolecular coupling of PS–PMMA–Br arms via low temperature styrene‐assisted atom transfer radical coupling (ATRC) leads to the formation of PS–PMMA catenand, which generates the metal‐free catenated macrocyclic PS–PMMA block copolymer after removal of Cu metal. The interlocked structures of catenated block copolymers are confirmed by GPC, NMR, and AFM image analysis.  相似文献   

18.
The available literature data on the phase equilibrium in the systems PS ‐ PMMA and PS ‐ (MMA‐S) copolymers of various compositions are ambiguous. The most contradictory results were obtained for mixtures formed from solutions [1‐3]: This fact can result, first, from the low compatibility of the polymers, which borders on the sensitivity of the testing methods used, and second, from specific interactions between the components. In the present work, the polymer compatibility was studied using an optical interferometer [4]. The sensitivity of this method is limited by the translational mobility of molecules, ∼10−9 cm2/s, so the measurements were carried out at high temperatures close to the destruction temperatures of PMMA and its copolymers. The specific feature of optical interferometry is that the studies are carried out in thin layer; this enables visual separation and estimation of the effect of the destruction products and the destruction process on the compatibility of polymers. Therefore, the purpose of this work was to study the effect of the thermal destruction products on the interference of the destructed polymer and on the diffusion transition zone of polymers in order to obtain the most complete data on the compatibility of the polymers over a broad composition range.  相似文献   

19.
In this paper, we have developed a geometric-based scaling model that describes the adsorption of diblock copolymer chains from good solvents and theta-solvents onto reactive surfaces of varying curvatures. To evaluate the impact of particle size on the adsorption process, we probed the adsorption of poly(styrene-b-methymethacrylate) (PS-PMMA) diblock copolymers from solvents with different degrees of selectivity on aluminum oxide (Al(2)O(3)) surfaces belonging to particles of different sizes. When the adsorbed PMMA layer is dense enough (in the case of a theta-solvent for the PMMA block), our results show good correlation between the theory and experimental results, pointing to the formation of a PMMA adsorption layer and a brushlike PS layer. Conversely, when adsorption occurs from a nonpreferential solvent, particularly on particles with high curvature, the PMMA adsorption layer at the surface becomes less dense and the grafted PS moiety exhibits a transitional morphology consisting of several layers of increasingly sparsely spaced blobs.  相似文献   

20.
The micellar behavior of PS-b-PDMS, PS-b-PDMS-b-PS linear block and (PS)2(PDMS) miktoarm star copolymers of polystyrene (PS) and polydimethylsiloxane (PDMS) is investigated in DMF, a selective solvent for PS. The linear PS-b-PDMS and star (PS)2(PDMS) copolymers exhibit different macromolecular architectures but similar compositions and total molecular weight, while the linear PS-b-PDMS-b-PS copolymer has the same composition as the diblock and miktoarm star but double their molecular weight. Static, dynamic light scattering and viscometry were used for the structural characterization of the micelles. Aggregation numbers were found to increase in the order PS-b-PDMS-b-PS < (PS)2(PDMS) < PS-b-PDMS. The corona thickness was dependent on the molecular weight of the soluble PS chains. In the case of (PS)2(PDMS), although the core area per PS chain, AC, was significantly lower than that of the linear copolymers, the coronal chains were not significantly stretched. This can be attributed to the stiff nature of the PS chains, which maintains the elongated form of the chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号