首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
n-Butyl titanate(IV)–triethylaluminum catalyst at Al/Ti molar ratios greater than 6 polymerizes methyl and n-butyl acrylates at ?78°C. The polymerization system which includes methyl acrylate at ?78°C, gives two ESR signals with g factors of 1.958 and 1.961 that overlap each other. The absorption intensity of the latter signal is approximately proportional to the polymer chain concentration calculated from polymer yield and the molecular weight. The polymerization system at Al/Ti ratios smaller than 3 has no catalytic activity on the polymerization and shows only the ESR signal with the g factor of 1.958. On the basis of these facts the ESR signal with the g factor of 1.961 is attributed to the active growing end of poly(methyl acrylate) with this catalyst. The character of this active growing end is discussed.  相似文献   

2.
Three series of block copolymers, namely, polystyrenecaproamide (I), polystyrenehexamethyleneadipamide (II), and poly(styreneethylene terephthalate) (III), were prepared, and the properties of the copolymers in relation to the block sequence lengths and the compositions were studied. Styrene was polymerized in the presence of aluminum chloride and thionyl chloride to give ω,ω′-dichloropolystyrenes of various degrees of polymerization from 12.0 to 51.0, which were either ammonolyzed to ω,ω′-diaminopolystyrene or hydrolyzed to ω,ω′-dihydroxypolystyrene. ω,ω′-Diaminopolystyre was treated with adipic acid to give the corresponding salts, namely, ω,ω′-diammoniumpolystyrene adipate, which was melt-polymerized either with ε-amino-n-caproic acid to give polystyrenecaproamide (I) or with hexamethylenediammonium adipate to give polystyrenehexamethyleneadipamide (II). ω,ω′-Dihydroxypolystyrene was melt-polymerized with dimethyl terephthalate and ethylene glycol to give poly(styreneethylene terephthalate) (III). All the block copolymers were of high enough molecular weight to be cast or spun into films or filaments. Upon polymerization, the increase of the block sequence of PSt units increased the amide content but decreased the ester content of the resulting copolymers. Also, an increase in n decreased the inherent viscosities of the copolymers at a constant monomer feed fc counted by the polymer equivalent of PSt but increased the inherent viscosities at a constant monomer feed rc counted by the monomer equivalent of PSt. The melting points of the copolymers decreased with increasing n values. Also, an increase in n decreased the densities of I and III but increased the density of II at a constant amide or ester composition Fc counted by polymer units but increased the densities of I, II, and III at a constant amide or ester composition Rc counted by the monomer unit.  相似文献   

3.
We synthesized optically active polyradicals possessing an excess of one-handed helical backbone by helix-sense-selective polymerization (HSSP) of achiral monomers which was promoted by rhodium complex catalyst in the presence of (R)- or (S)-1-phenylethylamine. The monomer, which had two hydroxy groups and a hydrogalvinoxyl unit, gave the corresponding polymer with an optically active helical conformation stabilized by intramolecular hydrogen bonding. The chemical oxidation of the polymer yielded the corresponding optically active helical polyradical with high spin concentration. The static magnetic susceptibility of the chiral polyradical was measured using a SQUID magnetometer. We have found that the stronger antiferromagnetic interaction was observed for the polyradical synthesized by HSSP in comparison with the polyradical via polymerization in the presence of racemic phenylethylamine.  相似文献   

4.
Fully aromatic poly(heterocyclic imides) of high molecular weight were prepared by the cyclopolycondensation reactions of aromatic diamines with new monomer adducts prepared by condensing orthodisubstituted aromatic diamines with chloroformyl phthalic anhydrides. The low-temperature solution polymerization techniques yielded tractable poly(amic acid), which was converted to poly(heterocyclic imides) by heat treatment to effect cyclodehydration at 250–400°C under reduced pressure. In this way, the polyaromatic imideheterocycles such as poly(benzoxazinone imides), poly(benzoxazole imides), poly(benzimidazole imides) and poly(benzothiazole imides) were prepared, which have excellent processability and thermal stability both in nitrogen and in air. The poly(amic acids) are soluble in such organic polar solvents as N,N-dimethyl-acetamide, N-methylpyrrolidone, and dimethyl sulfoxide, and the films can be cast from the polymer solution of poly(amic acids) (ηinh = 0.8–1.8). The film is made tough by being heated in nitrogen or under reduced pressure to effect cyclodehydration at 300–400°C. The polymerization was carried out by first isolating the monomer adducts, followed by polymerization with aromatic diamines. On subsequently being heated, the open-chain precursor, poly(amic acid), undergoes cyclodehydration along the polymer chain, giving the thermally stable ordered copolymers of the corresponding heterocyclic imide structure.  相似文献   

5.
The cyclic acetone ketal of 1,4-dihydroxy-2,3-epoxybutane (DMTO) polymerizes with i-Bu3Al-0.7 H2O catalyst by a cationic mechanism at ?78°C to a moderate molecular weight (ηinh up to 0.7), atactic (based on 13C-NMR) polymer (PDMTO). At higher temperature and in bulk, up to 14% crosslinked polymer is obtained as a result of epoxide and ketal ring opening. Triethylaluminum is an effective catalyst at 0–50°C in bulk. Coordination catalysts were less effective but the results indicate that an effective one can be designed. PDMTO is readily hydrolyzed with aqueous HCl treatment to atactic, water-soluble poly(1,4-dihydroxy-2,3-epoxybutane) (PDHEB) with a Tg of 80°C. PDHEB is melt stable to 200°C and can be molded to give brittle, clear films that readily pick up 5–10% H2O from the atmosphere to give properties like those of plasticized poly(vinyl chloride). PDHEB is degraded by electron beam radiation but can be crosslinked with glyoxal plus toluene sulfonic acid/The bis(trimethylsilyl) ether of cis-1,4-dihydroxy-2,3-epoxybutane was polymerized cationically with the i-Bu3Al-0.7 H2O catalyst at ?78°C to a fairly tactic, presumably racemic di-isotactic, amorphous polymer, with ηinh of 0.16. A mechanism is proposed for this stereoregular polymerization based on a complexation of the Si side group of the last chain unit with the propagating oxonium on.  相似文献   

6.
The effects of amines on the activity of ruthenium catalysts in the controlled synthesis of poly(methyl methacrylate) are reported at 80°C. The introduction of tert-butylamine or triethylamine into the polymerization system raises the polymerization rate by 1–2 orders of magnitude without reducing the high degree of control over the chain propagation step. The “living” character of methyl methacrylate polymerization in the presence of ruthenacarboranes and amines is proved by the fact that, as the monomer conversion increases, the molecular weight of the resulting polymer increases linearly and the polydispersity index decreases. The polymer can serve as a macroinitiator for postpolymerization and block copolymer synthesis.  相似文献   

7.
Kumada‐Tamao coupling polymerization of 1,4‐dialkoxy‐2‐bromo‐5‐(2‐chloromagnesiovinyl)benzene ( 1 ) and 1,4‐dialkoxy‐2‐(2‐bromovinyl)‐5‐chloromagnesiobenzene ( 2 ) with a Ni catalyst and Suzuki‐Miyaura coupling polymerization of 2‐{2‐[(2,5‐dialkoxy‐4‐iodophenyl)]vinyl}‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolane ( 3 ), its bromo counterpart 4 , and 2,5‐dialkoxy‐4‐(2‐bromovinyl)phenylboronic acid ( 5 ) with a Pd initiator were investigated under catalyst‐transfer condensation polymerization conditions for the synthesis of well‐defined poly(p‐phenylenevinylene) (PPV). The Kumada‐Tamao polymerization of vinyl Grignard‐type monomer 1 with Ni(dppp)Cl2 at room temperature did not proceed, whereas aryl Grignard‐type monomer 2 afforded oligomers of low molecular weight. Matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectra of the polymer obtained from 2 implied that the Grignard end group reacted with tetrahydrofuran to terminate polymerization. On the other hand, Suzuki‐Miyaura polymerization of vinyl boronic acid ester type monomers 3 and 4 and phenylboronic acid type monomer 5 with a Pd initiator and aqueous KOH at ?20 °C to room temperature yielded the corresponding PPV with high molecular weight within a few minutes. However, the molecular weight distribution was broad, and MALDI‐TOF mass spectra showed the peaks of polymers bearing no initiator unit at the chain end, as well as those of polymers with the initiator unit. These results indicated that intermolecular chain transfer of the Pd catalyst occurred. Dehalogenation and disproportionation of the growing end also took place as side reactions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2643‐2653  相似文献   

8.
Di-tert-butyl maleate (DtBM) did not polymerize with 2,2′-azobis(isobutyronitrile) as a radical initiator, but DtBM easily homopolymerized via a monomer-isomerization radical polymerization mechanism to give a high molecular weight polymer when morpholine was added into the polymerization system as an isomerization catalyst. The feature of the monomer-isomerization polymerization of DtBM was investigated in detail. The polymer obtained was confirmed to consist of a poly(tert-butoxycarbonylmethylene) structure similar to that from di-tert-butyl fumarate. Subsequent pyrolysis of the resulting polymer at 180°C is a useful route to synthesis of a high molecular weight poly(fumaric acid). © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Poly(10-undecene-1-ol)s as precursors for potential polar macromonomers were synthesized by metallocene-catalyzed polymerization. For the use as macromonomers, polymerizable terminal double bonds are an important requirement and thus, the investigation of the end groups in the polymers was the main focus of this study. The influence of the catalyst and polymerization conditions on the chain length of the polymer backbone, the monomer conversion as well as the end group characteristics were analyzed. It was possible to find conditions for preparing poly(10-undecene-1-ol)s with terminal double bonds using the catalyst system Cp2ZrCl2/MAO. Two other chosen catalysts produced mainly internal double bonds. The poly(10-undecene-1-ol)s could be prepared as atactic or isotactic-rich materials depending on the catalyst used.  相似文献   

10.
The polymerization of methyl methacrylate has been studied in toluene and tetrahydrofuran solution at ?78°C using butyllithium as catalyst. The structure of the polymer produced was determined by analysis of the α-methyl groups using 100 MHz NMR. It is shown that in a noncomplexing solvent such as toluene, the number of isotactic triads increases from 70% to 93% as the monomer concentration during polymerization is reduced from 5 mole/l. to approximately zero. The value of Pss/Pis depends strongly on monomer concentration, and hence any calculations regarding penultimate effects in such systems should be made at close to zero monomer concentration. In the THF solution the penultimate effect is nearly independent of monomer concentration, and both Pii/Psi and Pss/Pis are close to unity. The results may be explained in terms of a mechanism of the polymerization process in which toluene does not complex with the active site, while monomer and THF are weak and strong complexing agents, respectively.  相似文献   

11.
Polymerization of isoprene in presence of a heterogeneous Ziegler-type catalyst system, Cr(AcAc)3–AlEt3, has been studied in benzene medium. The rate of polymerization is first-order with respect to catalyst as well as monomer concentration. The rate studies, activation energy, and polymer microstructures are reported in order to follow the probable mechanism of polymerization.  相似文献   

12.
2,5-Dimethyl-3,4-dihydro-2H-pyran-2-carboxyaldehyde (methacrolein dimer) gave a polymer consisting of only recurring bicyclic structure of 1,4-dimethyl-6,8-dioxa-bicyclo-[3,2,1] octane with the use of Lewis acid and protonic acid as catalyst at room temperature. On the other hand, the polymer obtained by using BF3·(C2H5)2O under ?78°C. was found to have the structures produced by the aldehyde group polymerization as well as the bicyclic ones. The polymer obtained at ?40°C. had a low decomposition temperature (164°C.) owing to the presence of polyacetal group, whereas the fully saturated bicyclic polymer had a considerably high one (346°C.). The main factors affecting the polymerization were polymerization temperature and catalyst. Lowering temperature increased the polymerization of the aldehyde group. Anionic catalysts and weak cationic catalyst such as Al(C2H5)3? H2O, which were active catalysts for acrolein dimer, did not initiate the polymerization of methacrolein dimer. The fact that the relative viscosity of the polymer increased with polymerization time shows the polymerization of this monomer is a successive reaction.  相似文献   

13.
Butadiene polymerizes to cis-1,4 polymer on irregularly stacked, halogen-deficient crystals of cobalt(II) or nickel(II) halides. Halogen is removed from the halides by heating the salts under high vacuum or by photolyzing them in the presence of butadiene. Intrinsic viscosity and solubility of the polymer reach a steady state during polymerization. Cobalt chloride produces polymer of higher intrinsic viscosity than nickel chloride, but polymerization on nickel chloride is faster. Catalytic activity is attributed to the presence of ≤0.1% of nickel and cobalt monohalides in the catalyst.  相似文献   

14.
Kinetics of the polymerization of methyl methacrylate with the VOCl3? AlEt3 catalyst system at 40°C in n-hexane have been studied. A linear dependence of rate of polymerization on the monomer and catalyst concentrations as well as an overall activation energy of 5.87 kcal/mole were found. Characterization of the structure of the polymer by NMR spectra revealed the presence of stereoblock units. The mechanism of polymerization is discussed in relation to the kinetic data obtained.  相似文献   

15.
The di-isotacticity of poly(methylpropenyl ether) obtained by the cationic polymerization has been studied by NMR spectra. The NMR spectra of β-methyl protons of the polymer are decoupled from the β-methine proton spectra to determine the di-isotactic fraction in a polymer. The signals of β-methyl protons at 8.78 and 8.89 τ are estimated as spectra based on threo- and erythro-di-isotactic diads, respectively. With BF3·O(C2H5)2 as a catalyst, the trans monomer yields a crystalline polymer and its structure is threo-di-isotactic. Otherwise, cis monomer produces an amorphous polymer, and it is a mixture of threo- and erythro-di-isotactic structure. From these results, it is concluded that the double bond in trans monomer is opened exclusively in the cis type, and in cis monomer cis- and trans-openings take place at almost the same rate.  相似文献   

16.
The polymerizability of N-carboxy–amino acid anhydrides (NCAs) of L -leucine and L -alanine was examined in the solid state and in solution. L -leucine NCA shows much higher reactivity in the solid state (when immersed in hexane) than in solution (in acetonitrile), but the opposite is true for L -alanine NCA. However, the two NCAs give similar values of apparent activation energy in each polymerization system. Rather high-molecular-weight polypeptides were obtained in the polymerization of L -leucine NCA in the solid state compared with those obtained in solution, while the molecular weight of polymers obtained from L -alanine NCA was higher in solution than in the solid state. IR spectra showed that α helices form mainly in the polymerization of both L -leucine NCA and L -alanine NCA in the solid state; a small amount of the β structure forms in the latter polymerization. X-ray diffraction and electron microscopy revealed that L -leucine NCA polymerizes predominantly along the c axis in the crystal, while the polymer chains grow in random directions in the crystal of L -alanine NCA. The difference can be explained by the molecular arrangement in the crystal. There are two requirements for high reactivity in the solid state: the five-membered rings of the monomer must form a layer structure and the polymer must occupy nearly the same space as the reacting monomer.  相似文献   

17.
We report a novel approach for fabrication of multifunctional conjugated polymers, namely poly(p‐phenylene)s (PPPs) possessing polypeptide (poly‐l ‐lysine, PLL) and hydrophilic poly(ethylene glycol) (PEG) side chains. The approach is comprised of the combination of Suzuki coupling and in situ N‐carboxyanhydride (NCA) ring‐opening polymerization (ROP) processes. First, polypeptide macromonomer was prepared by ROP of the corresponding NCA precursor using (2,5‐dibromophenyl)methanamine as an initiator. Suzuki coupling reaction of the obtained polypeptide and PEG macromonomers both having dibromobenzene end functionality using 1,4‐benzenediboronic acid as the coupling partner in the presence of palladium catalyst gave the desired polymer. A different sequence of the same procedure was also employed to yield polymer with essentially identical structure. In the reverse sequence mode, low molar mass monomer (2,5‐dibromophenyl)methanamine, and PEG macromonomer were coupled with 1,4‐benzenediboronic acid in a similar way followed by ROP of the L‐Lysine NCA precursor through the primary amino groups of the resulting polyphenylene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1785–1793  相似文献   

18.
Poly(dimethylaminoethyl methacrylate N-oxide) (poly(DMAEMNO)) was prepared by oxidation of poly(dimethylaminoethyl methacrylate) with hydrogen peroxide in methanol. From thermogravimetric and IR spectroscopic investigations Cope elimination of amine oxide group in poly(DMAENO) was found to occur at 120–150°C. The postpolymerization of partially pyrolyzed polymer carrying vinyl ester group as pendant was performed with azobisisobutyronitrile at 60°C in methanol to give cross-linked polymer that was found to form hydrogel. Poly(DMAEMNO) gave metal–polymer complexes with CuCl2, ZnCl2, and CoCl2. Cobalt–polymer complex had a constitution of 1:2 of metal ion to amine oxide group, while copper– and zinc–polymer complexes seemed to have structures of 1:1 and 1:2 of metal ion to amine oxide group. Furthermore, polymer complexes of poly(DMAEMNO) with poly(methacrylic acid) and poly(acrylic acid) were found to be formed by mixing aqueous solutions of both polymers and also by radical polymerization of the acid monomers in the presence of poly(DMAEMNO). From elemental analysis, thermogravimetric investigation, and measurement of turbidity it was concluded that the resulting polymer–polymer complexes contained more than one acid monomer unit per one N-oxide unit.  相似文献   

19.
A homogeneous catalyst system, Cr(C5H7O2)3–Al(C2H5)3, was used for the polymerization of methyl methacrylate. The yield of polymer increased up to an Al/Cr ratio of 12 and thereafter remained almost constant with increasing Al/Cr. The rate of polymerization increased linearly with increasing catalyst and monomer concentrations at Al/Cr = 12. The molecular weight, however, decreased with increasing catalyst concentration and increased with increasing monomer concentration, indicating anionic polymerization reaction. NMR studies of the polymers indicated the presence of a stereoblock structure, which changed to heteroblock structure in presence of triethylamine and hydroquinone as additives in the catalyst. In the light of these observations, the mechanism of the polymerization is discussed.  相似文献   

20.
We studied the mechanism of the chain-growth polymerization of 2-bromo-5-chloromagnesio-3-hexylthiophene (1) with Ni(dppp)Cl2 [dppp = 1,3-bis(diphenylphosphino)propane], in which head-to-tail poly(3-hexylthiophene) (HT-P3HT) with a low polydispersity is obtained and the M(n) is controlled by the feed ratio of the monomer to the Ni catalyst. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra showed that the HT-P3HT uniformly had a hydrogen atom at one end of each molecule and a bromine atom at the other. The reaction of the polymer with aryl Grignard reagent gave HT-P3HT with aryl groups at both ends, which indicates that the H-end was derived from the propagating Ni complex. The degree of polymerization and the absolute molecular weight of the polymer could be evaluated from the 1H NMR spectra of the Ar/Ar-ended HT-P3HT, and it was found that one Ni catalyst molecule forms one polymer chain. Furthermore, by reaction of 1 with 50 mol % Ni(dppp)Cl2, the chain initiator was found to be a bithiophene-Ni complex, formed by a coupling reaction of 1 followed by insertion of the Ni(0) catalyst into the C-Br bond of the dimer. On the basis of these results, we propose that this chain-growth polymerization involves the coupling reaction of 1 with the polymer via the Ni catalyst, which is transferred intramolecularly to the terminal C-Br bond of the elongated molecule. We call this mechanism "catalyst-transfer polycondensation".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号