首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过高温固相反应合成了新型的蓝色荧光粉Sr7Zr(PO4)6xEu2+。通过X射线粉末衍射(XRD)、紫外可见(UV-Vis)吸收光谱、荧光光谱研究了Sr7Zr(PO4)6xEu2+材料的相纯度及荧光性质。结果表明,Eu2+掺杂获得的Sr7Zr(PO4)6xEu2+荧光粉为纯相,且200~400 nm范围内的近紫外(NUV)光均能对其进行有效的激发。在315 nm的激发下,Sr7Zr(PO4)6xEu2+荧光粉发射出峰值位于415 nm左右的蓝光,且Eu2+在Sr7Zr (PO4)6基质中的最佳掺杂浓度为0.05,相应的CIE色度坐标为(0.164,0.021),比商用BaMgAl10O17∶Eu2+(BAM)蓝色荧光粉具有更高的色纯度。  相似文献   

2.
A series of novel KBaSc2(PO4)3:Ce3+/Eu2+/Tb3+phosphors are prepared using a solid‐state reaction. X‐ray diffraction analysis and Rietveld structure refinement are used to check the phase purity and crystal structure of the prepared samples. Ce3+‐ and Eu2+‐doped phosphors both have broad excitation and emission bands, owing to the spin‐ and orbital‐allowed electron transition between the 4f and 5d energy levels. By co‐doping the KBaSc2(PO4)3:Eu2+ and KBaSc2(PO4)3:Ce3+ phosphors with Tb3+ ions, tunable colors from blue to green can be obtained. The critical distance between the Eu2+ and Tb3+ ions is calculated by a concentration quenching method and the energy‐transfer mechanism for Eu2+→Tb3+ is studied by utilizing the Inokuti–Hirayama model. In addition, the quantum efficiencies of the prepared samples are measured. The results indicate that KBaSc2(PO4)3:Eu2+,Tb3+ and KBaSc2(PO4)3:Ce3+,Tb3+ phosphors might have potential applications in UV‐excited white‐light‐emitting diodes.  相似文献   

3.
Samples of the Ca3Sc2Si3O12 (CSS) host singly doped with Eu2+ or Yb3+, doubly doped with Eu2+ and Yb3+, and triply doped with Ce3+, Eu2+ and Yb3+ were synthesized by a sol–gel combustion process under reducing conditions. Unlike previous reports of Eu2+→Yb3+ energy transfer in other systems, the energy transfer is resonant in the CSS host and the transfer efficiency reaches 100 % for lightly doped samples. The transfer mechanism is multipolar rather than electron transfer for the sample compositions employed herein. The emission intensity of Yb3+ is further enhanced by co‐doping with Ce3+ in addition to Eu2+. The quantum efficiencies of the doped materials range between 9 % and 93 %.  相似文献   

4.
A novel orange‐yellow‐emitting Ba3Gd(PO4)3:x Eu2+,y Mn2+ phosphor is prepared by high‐temperature solid‐state reaction. The crystal structure of Ba3Gd(PO4)3:0.005 Eu2+,0.04 Mn2+ is determined by Rietveld refinement analysis on powder X‐ray diffraction data, which shows that the cations are disordered on a single crystallographic site and the oxygen atoms are distributed over two partially occupied sites. The photoluminescence excitation spectra show that the developed phosphor has an efficient broad absorption band ranging from 230 to 420 nm, perfectly matching the characteristic emission of UV‐light emitting diode (LED) chips. The emission spectra show that the obtained phosphors possess tunable color emissions from yellowish‐green through yellow and ultimately to reddish‐orange by simply adjusting the Mn2+ content (y) in Ba3Gd(PO4)3:0.005 Eu2+,y Mn2+ host. The tunable color emissions origin from the change in intensity between the 4f–5d transitions in the Eu2+ ions and the 4T16A1 transitions of the Mn2+ ions through the energy transfer from the Eu2+ to the Mn2+ ions. In addition, the mechanism of the energy transfer between the Eu2+ and Mn2+ ions are also studied in terms of the Inokuti–Hirayama theoretical model. The present results indicate that this novel orange‐yellow‐emitting phosphor can be used as a potential candidate for the application in white LEDs.  相似文献   

5.
Energy transfer from UO22+ to Sm3+ is described. The transfer efficiencies are calculated from the decrease of donor luminescence and lifetimes and from the increase of the acceptor fluorescence. It is shown that the transfer is nonradiative. The energy transfer efficiencies are greater when the donor is excited at higher energy levels due to stronger overlap between electronic levels of donor UO22+ and acceptor Sm3+. From the comparison of energy transfer efficiencies from UO22+ to Sm3+ and Eu3+ it is deduced that the overlap between excitation levels of donor and acceptor is a sufficient condition for the transfer.  相似文献   

6.
Eu3+ doped transparent glass ceramics embedding SnO2 nano-crystals were prepared by melt quenching and subsequent heating. Site selective excitation experiments revealed that some Eu3+ ions were incorporated in the SnO2 lattices by substituting Sn4+ ions, whereas the rest located in the oxide glassy matrix. Interestingly, it is found that the Eu3+ ions residing in the SnO2 lattices exhibited much longer luminescent decay lifetime than those in the glassy matrix. Measurements on the photoluminescence excitation and photoluminescence spectra demonstrated the occurrence of energy transfer from the SnO2 nano-crystals to the Eu3+ ions. The influences of Eu3+ content, and furthermore, their location on the energy transfer process were discussed.  相似文献   

7.
讨论了辛基(苯基)-N,N-二异丁基胺甲酰基甲基氧化膦(CMPO)/1-烷基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐([Cnmim][NTf2],n=2,8,12)萃取体系分别对硝酸溶液中的铕离子(Eu3+)和铀酰根离子(UO22+)的萃取行为。主要研究了硝酸浓度、接触时间、温度、CMPO浓度对CMPO/[Cnmim][NTf2]体系萃取性能的影响,并选取CMPO/[C2mim][NTf2]体系对模拟高放废液中的镧锕元素进行了萃取分离。结果表明:随着离子液体侧链长度增长,萃取平衡时间逐渐延长;CMPO/[C2mim][NTf2]体系对Eu3+的萃取是放热反应,萃取率随酸度增加而逐渐降低,对UO22+则是吸热反应,萃取率随酸度增加而逐渐升高;通过机理研究,推测出对Eu3+的萃取反应是离子交换,而对UO22+的萃取反应则是中性配位;CMPO/[C2mim][NTf2]体系能有效的萃取模拟高放废液中的镧系、锕系元素,且在高酸下有一定的镧锕分离效果。  相似文献   

8.
《化学:亚洲杂志》2018,13(18):2649-2663
In this work, reciprocal energy transfer between Mn2+ and Eu2+ ions in nitride SrAlSi4N7 has been found and investigated in detail. In contrast to Mn2+‐ and Eu2+‐activated oxide‐based phosphors, the red light centered at 608 nm is ascribed to 4f–5d transitions of Eu2+ ions and Mn2+‐activated SrAlSi4N7 emits a cyan light peaking at 500 nm. Additionally, the special broad excitation band of SrAlSi4N7:Mn2+ centered at 362 nm has been covered by that of Eu2+ ions ranging from 300 to 550 nm. The overlap of the energy level of Mn2+ and Eu2+ ions creates the conditions for reciprocal energy transfer between Eu2+ and Mn2+ ions. A series of SrAlSi4N7:0.002 Mn2+,xEu2+ (0≤x≤005) with tunable light emission have been synthesized and the decay curves of samples prove the reciprocal occurrence of the energy transfer between Mn2+ and Eu2+ ions. This mode of energy transfer not only prevents the loss of energy, but also improves the thermal stability, and the intensity of SrAlSi4N7:Mn2+,Eu2+ at 150 °C is still beyond 92 % of the initial intensity. The results provide a new mode of energy transfer, which is expected to reduce the drawbacks existing in energy transfer.  相似文献   

9.
Results of studying the spectral and luminescent properties of Eu3+ ions upon homogeneous excitation of POCl3–SnCl4-UO2+ 2–Eu3+ and D2O–235UO2+ 2–Eu3+ solutions by -particles are presented. It was found that the radioluminescence intensity of Eu3+ ions in both solvents increases proportionally to the energy input by -particles. The yield of radioluminescence photons from europium ions in the POCl3–SnCl4–UO2+ 2–Eu3+ solutions is more than nine times as high as that in D2O–UO2+ 2–Eu3+. The radiation-chemical yields of excited 5 D 0 states of Eu3+ ions are 0.74 ± 0.07 and 0.18 ± 0.02 ions/100 eV in POCl3–SnCl4–UO2+ 2–Eu3+ and D2O–UO2+ 2–Eu3+ solutions, respectively.  相似文献   

10.
Sr8MgCe(PO4)7:Eu2+,Mn2+ phosphor with whitlockite‐type structure was prepared by a combustion‐assisted solid‐state reaction. The crystal structure and luminescence properties were investigated. Under UV radiation, Sr8MgCe(PO4)7 host exhibits a violet‐blue emission band from Ce3+ ions. When Eu2+/Mn2+ are doped into the host, the samples excited with 270 nm UV radiation present multicolor emissions due to the energy transfer (ET) from Ce3+ to Eu2+/Mn2+. The emitting color of Sr8MgCe(PO4)7:Eu2+ can be tuned from violet‐blue to yellow‐green, whereas Sr8MgCe(PO4)7:Mn2+ can emit red light. Under excitation with long wavelength at 360 nm, Sr8MgCe(PO4)7:Eu2+ phosphor shows a broadband emission from 390 to 700 nm, which is attributed to the 4f65d1→4f7 transition of Eu2+ without the contribution from Ce3+ emission. Tunable full‐color emitting light can be achieved in the Eu2+ and Mn2+‐codoped Sr8MgCe(PO4)7 phosphor by ETEu–Mn through control of the levels of doped Eu2+ and Mn2+ ions. These results suggest that Sr8MgCe(PO4)7:Eu2+,Mn2+ phosphor has potential applications in NUV chip pumped white LEDs.  相似文献   

11.
采用sol-gel法合成了系列发光体Li2O-Ln2O3-SiO2:Eu^3^+,Bi^3^+,并确定了发光体的物相结构。当Ln^3^+=Y^3^+和Ln^3^+=La^3^+时,紫外光激发下Eu^3^+的发射分别以红光和橙光为主,只存在一种Eu^3^+发光中心;Ln^3^+=Gd^3^+时,至少存在两种Eu^3^+发光中心和两种Bi^3^+发光中心(共掺杂Eu^3^+,Bi^3^+的吸收和发射所  相似文献   

12.
A 1:1 inclusion compound between octakis(2,3,6-tri-O-methyl)-γ-cyclodextrin (TRIMEG) and the chelate complex Eu(NTA)3·2H2O (NTA=1-(2-naphthoyl)-3,3,3-trifluoroacetonate) was prepared and characterized by powder X-ray diffraction, thermogravimetric analysis and photoluminescence spectroscopy. The results were compared with those obtained for the corresponding native γ-CD adduct. Excitation and emission spectra were measured, and the lifetimes were determined for the Eu3+ first excited state (5D0). The results indicate the presence of only one low-symmetry environment for the Eu3+ cations in the inclusion compounds. Encapsulation of the Europium complex in the two CDs increases the quantum efficiency of the ligand-to-metal energy transfer pathway, but the efficiency of the Eu3+ sensitization was significantly higher with TRIMEG as the host molecule. This may be related with the observation that the two hosts appear to have different influences on the Eu3+ coordination environments for the guest molecule.  相似文献   

13.
Spectral-luminescent characteristics of Sr2Y8(SiO4)6O2: Eu powder crystal phosphor with the apatite structure and high-intensity luminescence of Eu3+ ions have been studied. The charge state of europium in the samples has been characterized by means of X-ray L3-adsorption spectroscopy. It was established that Eu3+ forms two types of optical centers. Besides, luminescence of Eu2+ions was found. Reduction Eu3+→Eu2+ was considered, which may be due to vacancy formation in the 4f crystal lattice position and to negative charge transfer by this vacancy to two ions. Thus, in the silicate lattice there exist inhomogeneously distributed oxygen-deficient centers, which are responsible for nonradiative transfer of excitation energy to Eu3+ and Eu2+ ions. To study electron-vibrational interactions in the crystal phosphor samples, their IR and Raman spectra were examined. In the luminescence spectrum of Eu2+, a series of low-intensity bands caused by interaction of the 4f65d state of Eu2+ with silicate lattice vibrations was observed.  相似文献   

14.
A theoretical procedure, via quantum chemical computations, to elucidate the detection principle of the turn-off luminescence mechanism of an Eu-based Metal-Organic Framework sensor (Eu-MOF) selective to aniline, is accomplished. The energy transfer channels that take place in the Eu-MOF, as well as understanding the luminescence quenching by aniline, were investigated using the well-known and accurate multiconfigurational ab initio methods along with sTD-DFT. Based on multireference calculations, the sensitization pathway from the ligand (antenna) to the lanthanide was assessed in detail, that is, intersystem crossing (ISC) from the S1 to the T1 state of the ligand, with subsequent energy transfer to the 5D0 state of Eu3+. Finally, emission from the 5D0 state to the 7FJ state is clearly evidenced. Otherwise, the interaction of Eu-MOF with aniline produces a mixture of the electronic states of both systems, where molecular orbitals on aniline now appear in the active space. Consequently, a stabilization of the T1 state of the antenna is observed, blocking the energy transfer to the 5D0 state of Eu3+, leading to a non-emissive deactivation. Finally, in this paper, it was demonstrated that the host-guest interactions, which are not taken frequently into account by previous reports, and the employment of high-level theoretical approaches are imperative to raise new concepts that explain the sensing mechanism associated to chemical sensors.  相似文献   

15.
The photoluminescence of uranium(VI) is observed typically in the wavelength range 400–650 nm with the lifetime of several hundreds μs and is known to be quenched in the presence of various halide ions (case A) or alcohols (case B). Here, we show by density functional theory (DFT) calculations that the quenching involves an intermediate triplet excited state that exhibits uranium(V) character. The DFT results are consistent with previous experimental findings suggesting the presence of photoexcited uranium(V) radical pair during the quenching process. In the ground state of uranyl(VI) halides, the ligand contributions to the highest occupied molecular orbitals increase with the atomic number (Z) of halide ion allowing larger ligand‐to‐metal charge transfer (LMCT) between uranium and the halide ion. Consequently, a larger quenching effect is expected as Z increases. The quenching mechanism is essentially the same in cases A and B, and is driven by an electron transfer from the quencher to the UO22+ entity. The relative energetic stabilities of the triplet excited state define the “fate” of uranium, so that in case A uranium(V) is oxidized back to uranium(VI), while in case B uranium remains as pentavalent.  相似文献   

16.
MY2(MoO4)4:Sm3+ and MY2(MoO4)4:xSm3+,yEu3+ (M=Ca, Sr and Ba) phosphors were successfully prepared using solid-state reaction route, and their luminescent properties and energy transfer process from Sm3+ to Eu3+ were systematically investigated. The results indicate that MY2(MoO4)4:Sm3+ phosphors can be effectively excited by 407 nm near UV light originating from the 6H5/2 → 4F7/2 transition of Sm3+, and exhibit a satisfactory red emission at 646 nm attributed to the 4G5/2 → 6H9/2 transition of Sm3+, in which the emission intensity of SrY2(MoO4)4:Sm3+ is the strongest among the MY2(MoO4)4:Sm3+ (M=Ca, Sr and Ba) phosphors. For Eu3+ co-doped MY2(MoO4)4:Sm3+ samples, with increasing Eu3+ doping content, the main emission peaks of Sm3+ (approximately 646 nm) are decreased, but the emission peaks and intensity of Eu3+ are increased while the maximum intensity of luminescence at the Eu3+ concentration 0.9. The introduction of Eu3+ in the MY2(MoO4)4:Sm3+ phosphors can remarkably generate a strong emission line at 616 nm, originating from the 5D07F2 transition of Eu3+ and Sm3+ (4G5/2) → Eu3+ (5D0) effective energy transfer process. The energy transfer mechanism from Sm3+ to Eu3+ was discussed in detail.  相似文献   

17.
NaLa(WO4)2 powders doped with Eu3+, Nd3+, and Er3+ have been synthesized by a mild hydrothermal method and a crystal of exclusive scheelite phase could be obtained at low temperature. From the spectrum of Eu3+ it has been concluded that the dopant Eu3+ ion occupies a La3+ site and mainly takes the site with C2 symmetry. The higher quenching concentration can be observed in the Eu3+-doped NaLa(WO4)2 powders. The Er3+- and Nd3+-doped NaLa(WO4)2 powders exhibit luminescence in the near infrared (Er3+ at 1550 nm, and Nd3+ at 1060 nm). The transition mechanism of the up-conversion luminescence of the Er3+-doped NaLa(WO4)2 powders can be ascribed to two photons absorption process.  相似文献   

18.
Silica xerogels containing Eu3+ ions and SnO2 nanocrystals were prepared in the sol‐gel process, and characterized by x‐ray diffraction (XRD) and photoluminescence spectra. Under the excitation at 393 nm, characteristic emission of Eu3+ ions at 614 nm was enhanced with increasing amount of SnO2 nanocrystals. Moreover, when the Eu3+/SnO2 co‐doped samples were excited at 345 nm, corresponding to the sideband of SnO2 nanocrystals, the emission of Eu3+ ions at 614 nm was clearly observed, while no emission of Eu3+ ions for the Eu3+‐doped sample. It may be ascribed to the energy transfer from SnO2 conduction band to Eu3+ conduction band. Further experimental results suggest that the energy transfer may be achieved through surface transition state.  相似文献   

19.
讨论了辛基(苯基)-N,N-二异丁基胺甲酰基甲基氧化膦(CMPO)/1-烷基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐([C_nmim][NTf_2],n=2,8,12)萃取体系分别对硝酸溶液中的铕离子(Eu~(3+))和铀酰根离子(UO_2~(2+))的萃取行为。主要研究了硝酸浓度、接触时间、温度、CMPO浓度对CMPO/[C_nmim][NTf_2]体系萃取性能的影响,并选取CMPO/[C_2mim][NTf_2]体系对模拟高放废液中的镧锕元素进行了萃取分离。结果表明:随着离子液体侧链长度增长,萃取平衡时间逐渐延长;CMPO/[C3+2mim][NTf_2]体系对Eu的萃取是放热反应,萃取率随酸度增加而逐渐降低,对UO_2~(2+)则是吸热反应,萃取率随酸度增加而逐渐升高;通过机理研究,推测出对Eu~(3+)的萃取反应是离子交换,而对UO_2~(2+)的萃取反应则是中性配位;CMPO/[C_2mim][NTf_2]体系能有效的萃取模拟高放废液中的镧系、锕系元素,且在高酸下有一定的镧锕分离效果。  相似文献   

20.
The extraction behavior of several metal ions viz., Am3+, Eu3+, UO2 2+, Th4+, Sr2+ and Cs+ was investigated from sulphate medium employing phosphotungstic acid (PTA) and polyethylene glycol (PEG). The influence of various parameters such as pH, PTA concentration, PEG concentration and salt concentration was studied. The order of extraction followed the trend: Am3+>Eu3+>>Th4+>UO2 2+>Sr2+>Cs+ which deviate significantly from the reported order with conventional solvents. The relatively poor extraction of UO2 2+, Sr2+ and Cs+ was ascribed to their lack of interaction with the phosphotungstate anion. The separation behaviour of Am3+ vis-a-vis Eu3+ was also investigated under different experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号