首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The graft copolymerization of undecylenic acid onto acrylonitrile–butadiene–styrene terpolymer (ABS) was initiated with benzoyl peroxide (BPO) in a 1,2‐dichloroethane solution. IR spectra confirmed that undecylenic acid was successfully grafted onto the ABS backbone. The influence of the concentrations of undecylenic acid, BPO, and ABS on the graft copolymerization was studied. A reaction mechanism was proposed: the grafting most likely took place through the addition of poly(undecylenic acid) radicals to the double bond of the butadiene region of ABS. A monomer cage effect on the graft reaction was observed to depend on the 1.5 power of the monomer concentration from the experimental results of the initial rate of graft copolymerization. The initial rate of graft copolymerization was written as Rp = 1.77 × 10−3[P][I2][M]2.5/([P]+2.75[M]2.5)2. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 486–494, 2001  相似文献   

2.
The graft copolymerization of methyl methacrylate onto silk fibers initiated by the ferric chloride-eysteine redox system has been investigated in aqueous medium. The rate of grafting was calculated by varying the concentrations of monomer, initiator, acidity of the medium, cysteine, and temperature. The percentage of grafting increases with an increase of Fe3+ concentration up to 2,5 × 10?3 mol/L and thereafter it decreases. The graft yield increases steadily upon increasing the monomer concentration. The graft yield also increases with increasing cysteine concentration up to 0.5 × 10?3 mol/L and then decreases. The effect of the perchloric acid concentration, temperature, solvents, and certain neutral salts on graft yield has also been investigated and a suitable reaction scheme has been proposed.  相似文献   

3.
The graft copolymerization of methyl methacrylate onto silk fibers was investigated in aqueous solution using the V5+?thiourea redox system. The rate of grafting was determined by varying monomer, thiourea, acidity of the medium, temperature, initiator concentration, and reaction medium. The percentage of graft yield increases significantly by increasing the initiator concentration up to 0.01 M and thereafter decreases with a further increase of initiator concentration. The graft yield increases with an increase of thiourea concentration up to 10.0 × 10?4 and then decreases with a further increase of thiourea concentration. The effect of increasing the monomer concentration brings about a significant enhancement in the graft yield. A suitable kinetic scheme has been proposed and the rate equation has been evaluated.  相似文献   

4.
ABSTRACT

A novel redox system, potassium diperiodatonickelate [Ni (IV)]‐chitosan, was employed to initiate the graft copolymerization of methyl acrylate (MA) onto chitosan in alkali aqueous solution. The effects of reaction variables such as monomer concentration, initiator concentration, reaction time, pH and temperature were determined. By means of a series of copolymerization, the grafting conditions were optimized. The maximum grafting percentage obtained was 404.1% when 0.3 g chitosan was copolymerized with 1.8 mL monomer at 35°C for 5 hours with [Ni (IV)]=9.4×10?4 M and the total volume was 20 mL. Ni (IV)-chitosan system is found to be an efficient redox initiator for this graft copolymerization. A single electron transfer mechanism is proposed to explain the formation of radicals and the initiation. The grafted copolymers were characterized by IR and X-ray diffraction diagrams. The thermal stability of chitosan and chitosan-g-PMA was studied by thermogravimetric analysis (TGA).  相似文献   

5.
Abstract

The graft copolymerization of methyl methacrylate (MMA) onto mulberry silk fibers was studied in aqueous solution using the acetylacetonate oxovanadium (IV) complex. The rate of grafting was investigated by varying the concentration of the monomer and the complex, the acidity of the medium, the solvent composition of the reaction medium, the surfactants, and the inhibitors. The graft yield increases with increasing concentration of the initiator up to 8.75 × 10?5 mol/L, of the monomer up to 0.5634 mol/L, and thereafter it decreases. Among the various vinyl monomers studied, MMA was found to be most suitable for grafting. Grafting increases with increasing concentration of HCIO4 and with increasing temperature. Inhibitors like picryl chloride and hydroquinone significantly decrease the extent of grafting. Alcoholic solvents at a solvents/water ration of 10:90 seem to constitute the most favorable medium for grafting. A suitable reaction scheme has been proposed, and the activation energy calculated from the Arrhenius plots.  相似文献   

6.
Graft copolymerization of methyl methacrylate onto wool was investigated in aqueous solution using the potassium peroxy-diphosphate-thiourea redox system as the initiator. The rate of grafting was determined by varying the monomer, peroxydi-phosphate ion, temperature, and solvent. The graft yield increases with increasing peroxydiphosphate ion up to 80 × 10?-4 mol/L, and with further increase of peroxydiphosphate ion the graft yield decreases. The graft yield increases with increasing monomer concentration. The percentage of grafting decreases with increasing thiourea concentration. The rate of grafting increases with an increase of temperature. The effect of acid and water-soluble solvent and certain salts on graft yield has been investigated and a suitable rate expression has been derived.  相似文献   

7.
To improve the low water wettability of poly(ethylene terephthalate) (PET), graft polymerization of acrylamide (AAm) by UV irradiation was performed onto the surface of a PET film with the simultaneous irradiation method without using a photo sensitizer. The PET film immersed in a 10 wt % deaerated aqueous solution of AAm was found to become highly hydrophilic upon UV irradiation. Optical microscopy on cross sections of grafted films showed that localization of the graft polymerization was restricted to a thin surface region of the film. Both the low concentration of polymer radicals formed by UV irradiation and the monomer penetration limited to the film surface would be responsible for localization of the grafted layer to the film surface region. Pretreatment of the PET film with benzyl alcohol was effective for enhancement of the graft polymerization. Retention of high hydrophilicity of the surface even after rigorous extraction of homopolymer and a comparative study of polymerization without UV irradiation strongly suggested that UV irradiation of the PET film under immersion in the deaerated AAm aqueous solution would lead to formation of the true graft copolymer.  相似文献   

8.
The graft copolymerization of methyl methacrylate (MMA) onto silk in aqueous media initiated by the potassium peroxydiphosphate-thiourea redox system was studied at 50°C. The rate of grafting was determined by changing [monomerl], [thiourea], [initiator], acidity of the medium, reaction medium, and temperature. A significant increase percent of grafting was noticed with increasing monomer concentration to 84.49 × 10?2 mole/liter and the further increase is associated with the decrease of graft yield. The graft yield increases with an increase of thiourea (Tu) concentration to 25 × 10?5 mole/liter; then it decreases. A measurable increase in graft yield was observed with an increase in acidity of the medium. Graft yield increases to a certain temperature, i.e., 50°C, and then it decreases. The graft yield increases with an increase of initiator concentration to 60 × 10?4 mole/liter; then it decreases. The graft yield is medium dependent. A suitable kinetic path has been proposed and the rate equation has been derived.  相似文献   

9.
New graft copolymers were synthesized by grafting hydroxyethyl methacrylate and hydroxpropyl methacrylate on poly(vinyl alcohol) in aqueous solution with Ce+4ions as initiator. The dependence of the percentage of grafting and monomer conversion on the concentration of the monomer, on the concentration of the initiator, on the total concentration of the reactants, and on temperature and duration of the reaction were investigated. Some basic properties of the graft copolymers and some preliminary permeation measurements of water vapors through films, made from these copolymers, are also reported.  相似文献   

10.
本文介绍了一种利用荧光熄灭定量的测定铜(II)的新方法。从新鲜菠菜中提取叶绿素-a,用高氯酸溶液处理,制得脱镁叶绿素-a。测量脱镁叶绿素-a的紫外-可见吸收光谱,观测到505和535nm处有特征吸收峰。在60 ℃水浴中,脱镁叶绿素-a的丙酮溶液与铜(II)离子水溶液混合,5分钟后发现混合液颜色变绿,505和535 nm处吸收峰消失。铜(II)离子水溶液与脱镁叶绿素-a的丙酮溶液混合后发生荧光猝灭现象,而类似浓度的其它生理离子在相同反应条件下对脱镁叶绿素-a的荧光猝灭现象不明显。 研究了铜(II)离子与脱镁叶绿素-a的反应时间,反应温度对荧光强度衰减的影响。并通过阿累尼乌斯经验关系估算铜(II)离子与脱镁叶绿素-a反应的活化能约为10 ±1kJ·mol-1。研究了铜(II)离子的浓度对脱镁叶绿素-a的丙酮溶液荧光强度的影响,在8.0×10-5 ~8.0×10-7 mol·dm-3范围内,铜(II)离子的浓度与混合液的荧光强度成线性衰减关系,检测限可达8.0×10-7 mol·dm-3。利用脱镁叶绿素-a的丙酮溶液的荧光强度变化测量,有望发展成为一种检测铜(II)离子的新方法。  相似文献   

11.
Abstract

The feasibility of grafting poly(methyl acrylate) and poly[1-(methoxycarbonyl) ethylene] onto chitosan, poly-β(1←-4)-2-amino-2-deoxy-d-glucose, was investigated. The grafting reaction was carried out in aqueous solution by using ferrous ammonium sulfate (FAS) in combination with H2O2 as redox initiator. The effects of such reaction variables as chitosan, monomer and initiator concentrations, reaction time, and reaction temperature were determined. Through this study the grafting reaction could be optimized. The grafting yield reached its maximum value of 332% when 0.3 g chitosan was copolymerized with 3 mL monomer at 70°C for 120 minutes with [FAS] = 6 × 10?5 M, [H2O2] = 6 × 10?3 M, and 8 mL water. The grafted chitosan was found to be insoluble in solvents for chitosan and solvents for poly(methyl acrylate), but did show swelling in dilute acetic acid, methanol, acetone, and in an ethanol/2% acetic acid 1:1 mixture. The thermal stability of chitosan and grafted chitosan were studied by dynamic thermogravimetric analysis. The results show that the graft copolymer is thermally more stable than pure chitosan. The overall activation energy for graft copolymerization was estimated to be 32.8 kcal/mol.  相似文献   

12.
聚对苯二甲酸乙二醇酯纤维在空气氛中经γ-射线辐照生成大分子过氧化物,通过联氨-铜离子催化分解生成大分子自由基,在丙烯酸水溶液中进行接枝反应,丙烯酸的接枝率不受介质中氧的影响。根据接枝条件,有一个对接枝最有利的联氨浓度范围。在铜离子浓度0—2.5×10~(-3)克分子/升的实验范围内,接枝率随铜离子浓度而增加。  相似文献   

13.
The graft copolymerization of methyl methacrylate onto natural rubber (NR) is investigated using potassium peroxydiphosphate as the initiator. The rate of grafting is determined by varying monomer concentration, peroxydiphosphate concentration, and temperature. The graft yield increased with an increase in monomer concentration up to 1.4082M/L and thereafter the graft yield decreases. The graft yield increases significantly with an increase of peroxydiphosphate concentration up to 150 X 10-1M/L and thereafter the graft yield decreases. The grafting reaction is temperature dependent. A suitable kinetic scheme is proposed and the rate equation is evaluated.  相似文献   

14.
Graft polymerization of methyl methacrylate on viscose fibers induced by the DMA–Cu2+ ion system was investigated under different conditions. Variables studied include concentration of DMA, Cu2+ ion, and MMA, reaction time, and temperature. There are optimal concentrations of DMA and Cu2+; below or above these concentrations lower grafting occured. Within 4 hr reaction time, the grafting reaction showed an initial fast rate followed by a slower one at 80°C. At 70°C, on the other hand, the graft yield increased in proportion to the increase in reaction time. Increasing the monomer concentration did not have a significant effect on the graft yield during the first 45 min of reaction. Beyond this, the effect of monomer concentration was marked.  相似文献   

15.
Graft copolymerization of methacrylic acid (MetAc) onto potato starch using H2O2/Fe++ redox system was investigated. The best conditions of the grafting reaction were determined and several variables were studied: initiator and monomer concentrations, time, and temperature. Percent grafting efficiency, percent grafting, percent grafted monomer conversion, and total conversion were obtained. The optimum graft yield was obtained at 7.3 × 10?3M H2O2 concentration and it was favored by increasing the methacrylic acid concentration and reaction time.  相似文献   

16.
Abstract

The graft copolymerizations of acrylonitrile (AN) and 1-vinyl-naphthalene (1-VN) onto ethylene-propylene-diene terpolymer (EPDM) were carried out with benzoyl peroxide (BPO) as an initiator in toluene. The effects of the mole ratio of 1-VN to AN, initiator concentration, reaction time, reaction temperature, and EPDM concentration on the graft copolymerizations were examined. The synthesized graft terpolymers, acrylonitrile-EPDM-1-vinylnaphthalene (AEV1), were identified by IR spectra. The thermal stability and tensile strength of AEV1 were greatly improved compared with those of ABS. The light resistance and weatherability of AEV1 were better than those of ABS when subjected to UV light for longer than 96 hours.  相似文献   

17.
Grafting of methyl methacrylate (MMA) onto delignified Grewia optiva fiber using ascorbic acid/H2O2 as an initiator was carried out under microwave irradiation. The effects of varying the microwave power, exposure time, and concentration of initiator and monomer of graft polymerization were studied to obtain maximum grafting percentage (26.54%). The experimental results showed that the optimal conditions for grafting were: exposure time, 10min; microwave power, 110 W; ascorbic acid concentration, 3.74mol/L × 10?2; H2O2 concentration, 0.97mol/L × 10?1; monomer concentration, 1.87mol/L × 10?1. The graft copolymers were characterized by Fourier transform-infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA).  相似文献   

18.
Graft copolymerization of methyl methacrylate onto lignocellulosic Abelmoschus esculentus fibers was successfully carried out in aqueous medium using ascorbic acid and hydrogen peroxide as redox initiator. Maximum percentage of grafting was achieved when the concentrations of ascorbic acid, hydrogen peroxide, and monomer were 3.85 × 10?2, 2.41 × 10?1, and 1.87 × 10?1 mol/L respectively at a temperature of 45°C for a reaction time of 90 min. The kinetics of graft copolymerization was also studied, and it was found that the rate expression for graft copolymerization is (Rg) = K [Asc]0.68[H2O2]0.49[MMA]1.17. The activation energy for graft copolymerization of MMA onto Abelmoschus fiber was found to be 12.48 KJ/mol. The graft copolymers thus formed were characterized by FT-IR spectroscopy, scanning electron microscopy and thermogravimetric analysis.  相似文献   

19.
The photoinduced grafting polymerization of acrylic acid onto the surface of a polypropylene film under the action of radiation with a wavelength of 365 nm and an intensity of 8–193 mW/cm2 emitted by high-power UV light-emitting diodes is studied. Grafting is performed from a thin layer of the aqueous solution of the monomer onto the surface containing a photoinitiator (benzophenone) deposited from a solution in a volatile solvent. The amount of graft polymer is determined with the use of ATR FTIR spectroscopy. At an intensity of UV radiation of 193 mW/cm2, the time of attainment of grafting-polymerization saturation is decreased by a factor of 6 relative to this time at an intensity of 8 mW/cm2, typical for emitters based on mercury lamps. The rate of grafting polymerization in the studied UV-radiation-intensity range grows in proportion to the square root of intensity.  相似文献   

20.
Model graft copolymers were synthesized by grafting acrylamide onto dextran (Mw = 500,000) utilizing an initiation method in which a Ce(IV)/HNO3 solution was added to the dextran solution in order to allow coplexation prior to monomer addition. Three synthetic reaction parameters were optimized on the basis of conversion and solution viscosity: monomer concentration, dextran concentration, and nitric acid concentration. Molar ratios of [Ce(IV)]/[dextran] were changed systematically to affect the number and length of the acrylamide grafts. The number of grafting sites and graft chain lengths, determined by selective hydrolysis of the carbohydrate backbone, were in good agreement with those theortically predicted from knowledge of initiation efficiency and monomer conversion. Rheological studies of the model graft copolymers were conducted in aqueous solutions as a function of temperature, added salt, and copolymer concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号