首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Synthesis and Structure of Cobalt(III) Complexes of 14-Membered cis- and trans-N2S2 Dibenzo Macrocycles with two Pendant Acetato Groups The isomeric fourteen membered macrocyclic ligands 6,7,9,15,16,18-hexahydrodibenzo[f,m][1,8]dithia[4,11]diazacyclotetradecine-8,17-diacetic acid-0.5-hydrate (H2L3), C22H26N2O4S2 · 0.5 H2O and 6,7,13,15,16,18-hexahydrodibenzo-[e,m][1,4]dithia[8,11]diazacyclotetradecine-14,17-diacetic acid-1.5-hydrate (H2L6), C22H26N2O4S2 · 1.5 H2O with cis- and trans-N2S2 donorsets and two pendant acetato groups form the stable complexes [Co(L3)]ClO4 · 2 H2O ( 1 ) and [Co(L6)]ClO4 · H2O ( 2 ). Co(III) is octahedrally coordinated herein to all six donor centers of the respective ligand. The macrocyclic rings are folded. The metal ions are located outside the macrocyclic cavity. The mean Co? N, Co? O and Co? S distances are 196, 190 and 224 pm, respectively. Crystal data: 1 , monoclinic, space group C2/c, a = 3 797.7(9), b = 763.8(3), c = 2 207.0(7) pm, β = 123.17(2), Z = 8, 3 445 reflections, R(Rw) = 0.072(0.070); 2 , monoclinic, space group C2/c, a = 3 197.1(6), b = 880.4(2), c = 1 890.6(4) pm, β = 112,19(3)°, Z = 8, 4 415 reflections, R(Rw) = 0.062(0.064).  相似文献   

2.
Single Crystals of A? Nd2S3, U? Ho2S3, D? Er2S3, and E? Lu2S3 through the Oxidation of Reduced Lanthanide Chlorides with Sulfur The oxidation of reduced chlorides (MCl2) or chloridehydrides (MClHx) of the lanthanides with sulfur (850°C, 7 d, tantalum ampoule) usually results in the formation of their sesquisulfides (M2S3) as the main product. In the presence of appropriate fluxes (e. g., NaCl), they often are obtained as single crystals, and the flux appears to decide which modification is favourized. Single crystals of Nd2S3 , (from NdCl2 + NaCl + S, 2 : 2 : 1, A-type: orthorhombic, Pnma (no. 62), Z = 4; a = 743.97(5), b = 402.78(3), c = 1551.96(9) pm, Vm = 70.015(8) cm3/mol, R , = 0.026, Rw = 0.023), Ho2S3 , (from Na0.25HoClH0.75 + S, 8 : 9, U type: orthorhombic, Pnma (no. 62), Z = 4, a = 1057.24(7), b = 384.48(4), c = 1041.15(7) pm, Vm = 63.716(9) cm3/mol, R , = 0.023, Rw = 0.020), Er2S3 , (from ErClH0.67 + NaCl + S, 2 : 2 : 1, D type: monoclinic, P21/m (no. 11), Z = 6, a = 1744.18(9), b = 398.22(3), c = 1010.13(6) pm, β = 98.688(4)°, Vm = 69.610(7) cm3/mol, R = 0.031, Rw = 0.029) and Lu2S3 , (from LuClH0.67 + NaCl + S, 2 : 2 : 1, E type: trigonal, R3 c (no. 167), Z = 6, a = 672.86(2), c = 1816.84(9) pm, c/a = 2.70, Vm = 71.497(6) cm3/mol, R = 0.023, Rw = 0.020) as well as more systematic general investigations (syntheses of the lanthanide sesquisulfides from the elements in the presence of NaCl as a flux in sealed tantalum containers at 850°C) are the main topic of the work presented here.  相似文献   

3.
Alkaline Earth Fluoromanganates(III): BaMnF5 · H2O and SrMnF5 · H2O Solid BaF2 or SrF2 forms with solutions of Mn3+ in aqueous hydrofluoric acid precipitates of hitherto unknown BaMnF5 · H2 and SrMnF5 · H2O respectively. X-ray structure determination on single crystals of both isotypic compounds (space group P21/m, Z = 2; BaMnF5 · H2O: a = 537.0(3), b = 817.2(2), c = 628.0(4) pm β = 111.17(5)°, Rw = 0.035 for 1403 reflections; SrMnF5 · H2O: a = 510.8(1), b = 792.0(2), c = 610.6(1) pm, β = 110.24(1)° Rw = 0.068 for 539 reflections) reveal pure [MnF6]3? octahedra connected with each other to infinite chains by sharing trans corners. The H2O molecules are coordinated to the alkaline earth ions only and form weak O? H…F hydrogen bonds. The pronounced weakening of the Mn? F bonds within the chain direction (Mn? F 2X 212.7(1)/210.8(5) pm, 2X 183.8(3)/181.8(9) pm, 2X 186.9(2)/187.2(8) pm) may be due by halves to the Jahn-Teller-effect as can be deduced by bond valence calculations.  相似文献   

4.
Ethyldimethylphenylammonium‐halogenoantimonates(III) The compounds were prepared by reaction of SbX3 with EtMe2PhNX (X = Cl, Br, I) in ethanol. Single crystal structure determinations yielded at room temperature: [EtMe2PhN]4Sb4Cl16 1 S.G. P21/n, No. 14, a = 1234.1(2), b = 1299.8(2), c = 1985.9(5) pm, β = 96.81(2)° and Z = 2; [EtMe2PhN]3[Sb2Br9], 2 , S.G. Pnma, No. 62, a = 3562.0(7), b = 995.4(2), c = 1276.1(3) pm and Z = 4; [EtMe2PhN]4[Sb6I22], 3 , S.G. P1, No. 2, a = 1146.3(3), b = 1223.1(2), c = 1743.7(3) pm, α = 88.25(2)°, β = 87.33(2)°, γ = 67.09(2)° and Z = 2. Enthalpies of transition and melting were determined with a DSC.  相似文献   

5.
The Crystal Structures of [Ni(py2-tasn)(H2O)](ClO4)2, [Pd(py2-tasn)](PF6)2, and [Pt(py2-tasn)](PF6)2. (py2-tasn=4,7-Bis(2-methylpyridyl)-1-thia-4,7-diazacyclononane) . The methylpyridyl functionalized macrocyclic ligand 4,7-Bis(2-methylpyridyl)-1-thia-4,7-diazacyclononane, py2-tasn, forms the stable complexes [Ni(py2-tasn)(H2O)]2+, [Pd(py2-tasn)]2+, and [Pt(py2-tasn)]2+. They have been isolated in the solid state and characterized by X-ray crystal structure analyses. All five donor atoms of the ligand are bound to the respective metal atom. NiII is octahedrally coordinated, with the pyridyl groups in cis-positions, PdII and PtII are square pyramidally coordinated, with the thioether group in the apical position. The Pd (Pt)—S distances are 290.7(1) and 305.6(3) pm, respectively. Crystal data: [Ni(py2-tasn)(H2O)](ClO4)4, orthorhombic, space group P212121, a=843.8(2), b=1 668.8(3), c=1 694.4(3) pm, Z=4, 2 444 unique data, R(Rw)=0.0825(0.0937); [Pd(py2-tasn)](PF6)2: monoclinic, space group P21/c, a=694.7(1), b=1 906.5(4), c=1 980.9(4) pm, β=93,43°, Z=4, 5 429 unique data, R(Rw)=0.0351(0.0451); [Pt(py2-tasn)](PF6)2: monoclinic, space group P21/n, a=1 080.1(2), b=1 175.0(2), c=2 075.6(4) pm, β=95.32(3)°, Z=4, 5 567 unique data, R(Rw)=0.0667(0.0845).  相似文献   

6.
Transition Metal Peroxofluoro Complexes. VI. Preparation, Vibrational Spectra, and Crystal Structure of (NH4)3Zr(O2)F5. A New Disorder Model for Ammonium Peroxopentafluoro Metallates(IV) with Elpasolite Structure (NH4)3Zr(O2)F5 has been prepared from solution and characterized by the i.r. and raman spectra. The disordered crystal structure was determined: space group Fm3 m, Z = 4, a = 944.01(8) pm, Rw = 0.014 for 162 reflections. A new disorder model – revised with respect to former proposals made for the isotypic Ti compound – allows now to derive unambiguously the geometry of the complex anions: d(O? O) = 157(1), d(Zr? O) = 206.3(9), d(Zr? F), average 203.8 pm. An analogous treatment of the disorder for (NH4)3Ti(O2)F5 also led to a significant improvement of the results (Rw = 0.019, d(O? O) = 151(2), d(Ti? O) = 197(1), d(Ti? F), average 191.6 pm).  相似文献   

7.
The Crystal Structures of (NH4)2[ReCl6], [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN and [ReCl4(18)(Crown-6)] Brown single crystals of (NH4)2[ReCl6] are formed by the reaction of NH4Cl with ReCl5 in a suspension of diethylether. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN crystallizes as brown crystal plates from a solution of ReCl5 in acetonitrile. Lustrous green single crystals of [ReCl4(18-crown-6)] are obtained by the reaction of 18-crown-6 with ReCl5 in a dichloromethane suspension. All rhenium compounds are characterized by IR spectroscopy and by crystal structure determinations. (NH4)2[ReCl6]: Space group Fm3 m, Z = 4, 75 observed unique reflections, R = 0.01. Lattice constant at ?70°C: a = 989.0(1) pm. The compound crystallizes in the (NH4)2[PtCl6] type, the Re? Cl distance is 235.5(1) pm. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN: Space group P1, Z = 1, 2459 observed unique reflections, R = 0.12. Lattice dimensions at ?60°C: a = 859.0(1), b = 974.2(7), c = 1287.3(7) pm, α = 102.69(5)°, b? = 105.24(7)°, γ = 102.25(8)°. The structure consists of two symmetry-independent [ReCl2(CH3CN)4]+ ions with trans chlorine atoms, [ReCl6]2? ions, and included acetonitrile molecules. In the cations the Re? Cl bond lengths are 233 pm in average, in the anion they are 235 pm in average. [ReCl4(18-crown-6)]: Space group P21/n, Z = 4, 3 633 observed unique reflections, R = 0.06. Lattice dimensions at ?70°C: a = 1040.2(4), b = 1794.7(5), c = 1090.0(5) pm, b? = 108.91(4)°. The compound forms a molecular structure, in which the rhenium atom is octahedrally coordinated by the four chlorine atoms and by two oxygen atoms of the crown ether molecule.  相似文献   

8.
Synthesis and Crystal Structure of Cu4[PhN3C6H4N3(H)Ph]42-O)2, a Tetranuclear Copper(II) Complex with 1-Phenyltriazenido-2-phenyltriazeno-benzene as Ligand Cu4[PhN3C6H4N3(H)Ph]4(μ-O)2 ( 1 ) results from the reaction of an aqueous solution of [Cu(NH3)4]2+ with 1,2-bis(phenyltriazeno)benzene in ether. 1 crystallizes in the orthorhombic space group Pba2 with the lattice parameters a = 1661.5(5), b = 1914.7(7), c = 1269.2(5) pm; Z = 2. In the tetrameric complex with the symmetry C2 the Cu2+ cations form a tetrahedron (Cu? Cu: 298.3(1)?337.1(1) pm). The μ2-oxo ligands occupy the twofold axis and bridge two opposite edges of the Cu4 tetrahedron (Cu? O: 190.0(3) and 192.5(4) pm). The 1-phenyltriazenido-2-phenyltriazeno benzene anions bridge two Cu2+ ions chelating one metal ion and coordinating monodentate the neighbouring one (Cu? N: 191.0(5)–204.1(4) pm).  相似文献   

9.
Anhydrous Rare-Earth Acetates, M(CH3COO)3 (M = Sm? Lu, Y) with Chain Structures. Crystal Structures of Lu(CH3COO)3 and Ho(CH3COO)3 Single crystals of the anhydrous rare-earth acetates containing lutetium (type 1) and holmium (type 2) were obtained by crystallisation at 120°C from diluted acetic acid solutions of their oxides and cesium acetate. The crystal structures [Lu(CH3COO)3: orthorhombic, a = 825.85(8), b = 1 398.1(2), c = 823.9(1) pm, Vm = 143.24(3) cm3/mol, space group Ccm21 (No. 36), Z = 4, R = 0.035, Rw = 0.030; Ho(CH3COO)3: monoclinic, a = 1 109.1(3), b = 2 916.3(10), c = 786.8(2) pm, β = 131.90(1)°, Vm = 142.58(8) cm3/mol, space group C2/c (No. 15), Z = 8, R = 0.039, Rw = 0.039, Rw = 0.026] were determined from four-circle diffractometer data sets. The structures consist of one-dimensional infinite chains built up by bridging acetate ions. Ho3+ is coordinated by 8 oxygen atoms, whereas Lu3+ has only 7 nearest oxygen neighbours. The chains are stacked parallel to the [001] direction. Isotypic compounds with Tm? Lu (type 1) and Sm? Er, Y (type 2) were prepared as powders and characterized by X-ray powder patterns. Thermoanalytical investigations (DTA, Guinier-Simon technique) of all compounds have shown that there is a first-order phase transition at 180°C (type 2) and in the range of 230–255°C (type 1). The high-temperature phase crystallizes with the known Sc(CH3COO)3 structure (type 0) where the rare earth cations are surrounded by 6 oxygen atoms. In the case of the type 1 compounds the phase transition is reversible.  相似文献   

10.
The Crystal Structure of [TeCl3(15-crown-5)]SbCl6 The title compound is synthesized by the reaction of tellur tetrachloride, 15-crown-5 and antimony pentachloride in acetonitrile solution, forming colourless crystals, which were characterized by IR spectroscopy and an X-ray structure determination. Space group Pnma, Z = 4, 1966 observed unique reflections, R = 0.072, Rw = 0.052. The compound forms ions [TeCl3(15-crown-5)]+ and SbCl6?; in the cation the tellurium atom is eightfold coordinated by the three chlorine atoms and the five oxygen atoms of the crownether molecule (Te? O bond lengths 266 and 279 pm).  相似文献   

11.
Syntheses and Crystal Structures of the Polytellurido Complexes (PPh4)4[M2Te12] of Copper(I) and Silver(I) The title compounds have been prepared as black crystal needles by reactions of Na2Te3 with CuCl and AgNO3, respectively, in dimethylformamide in the presence of PPh4Br. With regard to the large cell dimensions the crystal structure determinations were done by an imaging plate instrument. (PPh4)4[Cu2Te12]: Space group P21/n, Z = 6, 51 338 detected reflections, structure determination with 14 177 unique reflections with I > 4σ(I), R = 0.081. Lattice dimensions at ? 50°C: a = 1 704.5, b = 1 694.5, c = 5 044 pm, β = 94.20°. (PPh4)4[Ag2Te12]: Space group P21/n, Z = 6, 80 811 detected reflections, structure determination with 16 092 unique reflections with I > 3σ(I), R = 0.052. Lattice dimensions at ? 50°C: a = 1 703.8, b = 1 722.9, c = 5 123 pm, β = 94.65°. The structures of the isotypic compounds consist of six symmetry independent PPh4+ ions and two symmetry independent anions [M2Te12]4?, in which the metal atoms of two (MTe4)?-fivering fragments are linked by a Te42? chain.  相似文献   

12.
The monomeric octa-aza bis-α-diimine macrocyclic complex [CoII(C10H20N8)(H2O)](ClO4)2 I, undergoes various reactions on the macrocyclic ligand. Reaction of complex I with triethylamine in double molar proportions, followed by slow aerial oxidation, produces a molecular dimeric complex [CoII(C10H14N8)]2, III, and a novel Co(I) complex [CoI(C10H19N8)], IV. Complex III is a staggered cofacial dimer with a cobalt-cobalt bond length 2.86(1) Å. The macrocyclic ligand of the complex contains an a-diimine function in each five-membered chelate ring, and a three-atom N-C-N? delocalized system in each six-membered chelate ring. Complex IV has the 5-5-6-6 chelate arrangement because one α-diimine moiety is rearranged to a syn-anti configuration. In the structure, the two fused six-membered chelate rings are fully conjugated and the two fused five-membered rings are saturated. However, when complex I reacts with excess triethylamine under the similar conditions, a dimeric complex of another type, [CoII(C10Hl6N8)]2, II, was generated, in which one N-N bond of the macrocyclic ligand is broken. Complex IV can be isolated also from the reaction of complex I with excess hydrazine, followed by slow aerial oxidation. When hydrazine in double molar proportions was used, complex [CoI(C10H17N8)(NHNH)] V, which contains a coordinated diazene ligand, was obtained. Only one six-membered chelate ring of complex V is deprotonated and oxidized to form a three-atom N-C-N? delocalized system. The structures of octa-aza complexes I-V are determined by X-ray crystallography: I, orthorhombic, C mca, a = 11.646(4), b = 17.049(3), c = 10.706(3) Å, Z = 4, R = 0.045, Rw = 0.047, based on 1024 reflections with I > 2σ(I); II, monoclinic, P 21/c, a = 9.814(3), b = 22.583(6). c = 14.632(9) Å, β = 98.90(5)°, Z = 4, R = 0.085, Rw = 0.101, based on 2033 reflections with I > 2σ(I); III, tetragonal, P 4/nmm, a = 15.614(3), c = 6.498(2) Å, Z = 4, R = 0.081, Rw = 0.115, based on 340 reflections with I > 2σ(I); IV, orthorhombic, P bca, a = 8.484(1), b = 16.662(3), c = 18.760(2) Å, Z = 8, R = 0.029, Rw = 0.024, based on 1441 reflections with I > 2σ(I); V, monoclinic, P 21/m, a = 7.892(3), b = 11.713(6), c = 9.326(4) Å, β = 108.03(3), Z = 2, R = 0.047, Rw = 0.056, based on 948 reflections with I > 2σ(I).  相似文献   

13.
Phosphorane Iminato Complexes of Sulfur. Syntheses and Crystal Structures of [O3SS(NPPh3)2] · CH3CN, [SO(NPPh3)2], and [SCl(NPMe3)2]Cl The title compounds have been prepared by the reaction of Me3SiNPPh3 with SO2 and SOCl2, respectively, and by the reaction of Me3SiNPMe3 with S2Cl2. They form colourless, moisture sensitive crystals, which were characterized by IR spectroscopy and by crystal structure determinations. [O3SS((NPPh3)2)] · CH3CN : Space group Pca21, Z = 4, structure solution with 4016 observed unique reflections, R = 0.050. Lattice dimensions at ?60°C: a = 1865.1, b = 1168.4, c = 1569.0 pm. The compound has a zwitterionic structure with a S? S bond length of 218.2 pm and bond lengths S? N of 161.2 and P? N of 160.1 pm. [SO(NPPh3)2] : Space group P21/c, Z = 4, structure solution with 2854 observed unique reflections, R = 0.113. Lattice dimensions at ?50°C: a = 1173.1, b = 1585.6, c = 1619.2 pm, b? = 98.13°. The compound forms monomeric molecules, in which the positions of S and N atoms are disordered in two positions. The bond lengths are S? N 166 pm and P? N 163 pm in average. [SCl(NPMe3)2]Cl : Space group P1 , Z = 2, structure solution with 2416 observed unique reflections, R = 0.038. Lattice dimensions at 20°C: a = 613.2, b = 1030.3, c = 1111.4 pm, α = 88.48°, b? = 88.01°, γ = 83.10°. The compound forms ions [SCl(NPMe3)2]+ and Cl?. In the cation the sulfur atom is ?-tetrahedrally coordinated with a long S? Cl distance of 246.9 pm and bond lengths S? N of 155.3 pm and P? N of 164.3 pm in average.  相似文献   

14.
BaClSCN and Na4Mg(SCN)6: Two New Thiocyanates of the Alkaline Earth Metals The reaction of BaCl2 and NaSCN yielded single crystals of BaClSCN (P 21/m, Z = 2, a = 588.6(1) pm, b = 465.8(1) pm, c = 864.4(2) pm, β = 100.20(3)°, Rall = 0.0214). According to X‐ray single crystal investigations, the structure consists of anionic SCN and Cl layers, respectively, alternating in [001] direction. The SCN‐ions are connected via the N and the S atoms to the cations. Na4Mg(SCN)6 (P 3 1c, Z = 2, a = 863.8(1) pm, c = 1399.3(2) pm, Rall = 0.0870), which was obtained from a melt of NaSCN and MgCl2, consists of anionic layers with the cations between the sheets. The holes are filled altenatingly by Na+ or Na+ and Mg2+. Regarding only the C‐atoms of the SCN group, the structure can be described as a hexagonal closest packing whith the cations occupying 5/6 of the octahedral voids.  相似文献   

15.
[Cu3(S4)3]3?, a New Condensed Inorganic Ring System. Comparison with the Structures of Other Polysulfido Clusters of Copper By reaction of Cu(CH3COO)2 · H2O with a polysulfide solution [(C6H5)4P]2(NH4)-[Cu3(S4)3] · 2CH3OH ( 1a ) could be obtained in a pure form. The anion [Cu3(S4)3]3? ( 1 ) consists of a central Cu3S3 ring and three CuS4 rings. An X-ray structure analysis yields the following results for 1a : Space group P21/c, a = 2317.4(7), b = 1458.4(4), C = 1843. 1(5) pm, β = 108.68(2)°, V = 5901.0 106 pm3, Z = 4; R = 0.101 for 3817 independent reflections (Fo > 3.92° (Fo)). 1a was also characterized by its Raman spectrum.  相似文献   

16.
Treatment of the ligand 6‐aza‐2‐thiothymine (ATT, HL, 1 ) with palladium chloride in methanol forms the ionic complex [(HL)4Pd]Cl2·8MeOH ( 2 ), while its reaction with palladium iodide in same solvent produces the neutral complex trans‐[(HL)2PdI2]·2MeOH ( 3 ) in high yields. The reaction of 1 with Na2[PdCl4] in the presence of sodium acetate in a molar ratio of 2:1:2 and with platinum(II) chloride in presence of sodium acetate led to the dimer tetranuclear complexes [(L4Pd2)NaCl]2·8MeOH ( 4 ) and [L4Pt2Cl2]·6MeOH·H2O ( 5 ). The latter is the first PtIII complex of the ligand. All complexes were characterized by elemental analyses and IR spectroscopy and the crystal structures of 2 , 3 , 4 and 5 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 at ?80 °C: triclinic space group , a = 1006.6(1), b = 1006.9(1), c = 1158.1(1) pm, α = 85.20(1)°, β = 83.84(1)°, γ = 88.91(1)°, Z = 1, R1 = 0.0278; for 3 at ?80 °C: triclinic space group , a = 490.5(1), b = 977.2(2), c = 1116.8(2) pm, α = 90.26(1)°, β = 102.33(1)°, γ = 96.08(1)°, Z = 1, R1 = 0.0394; for 4 at ?80 °C: orthorhombic space group Ccca, a = 1791.7(2), b = 1874.1(2), c = 2044.0(1) pm, Z = 4, R1 = 0.0341 and for 5 at ?80 °C: monoclinic space group P21/c, a = 1464.3(1), b = 2003.7(1), c = 1368.5(1) pm, β = 95.66(1)°, Z = 4, R1 = 0.0429.  相似文献   

17.
Li6[TeMo6O24] · 18 H2O is triclinic (space group P1 , a = 1 041.7(1), b = 1 058.6(1), c = 1 070.8(1) pm, α = 61.08(1), β = 60.44(1), γ = 73.95(1)°). Single crystal X-ray structure analysis (Z = 1, 295 K, 317 parameters, 3 973 reflections, Rg = 0.0250) revealed an infinite branched chain of edge-sharing Li coordination polyhedra to be the prominent structural feature. One of the four crystallographically independent Li+ is coordinated octahedrally. The coordination polyhedra of the remaining Li+ are distorted trigonal bipyramids. Only three unique oxygen atoms (O(9), O(10), O(12)) of the centrosymmetric [TeMo6O24]6? anion are bound to Li+. The further positions in the coordination spheres of the Li+ are occupied by water molecules. Intermolecular hydrogen bonds involve mainly oxygen atoms of the [TeMo6O24]6? anion as nearly equivalent proton acceptors without regard to their different bonding modes to Te and Mo, respectively. Li6[TeMo6O24] · Te(OH)6 · 18 H2O crystallizes monoclinically in space group P21/n with Z = 4, a = 994.1(3), b = 2 344.8(10), c = 1 764.9(4) pm, and β = 91.36(4)°. Single crystal structure analysis with least squares refinement of 627 parameters (5 900 reflections, 295 K) converged to Rg = 0.0324. There are six unique Li+ cations. The coordination polyhedra of Li(1), Li(2), Li(3), and Li(4) are linked by common edges to yield an eight membered centrosymmetric strand. The coordination polyhedra of the remaining two Li+ sites (Li(5), Li(6)) are connected to a dimeric unit via a common corner. All oxygen atoms of the Te(OH)6 molecule are involved in the coordination of Li+. However, only three oxygen atoms (O(13), O(18), O(23)) of the [TeMo6O24]6? anion which lacks crystallographic symmetry are involved in the coordination of Li+. The oxygen atoms of the anion act as proton acceptors in hydrogen bonds of predominantly medium strength. Te(OH)6 molecules and [TeMo6O24]6? anions connected by strong hydrogen bonds form an infinite chain.  相似文献   

18.
The complexes [Cu(AMTTO)Cl2] ( 2 ), [Cu(AMTTO)2]Cl ( 3 ), and [Cu(AMTTO)(PPh3)2Cl] ( 4 ) have been prepared and characterized by IR spectroscopy and elemental analyses. Also single‐crystal X‐ray diffraction studies on compound 2 , 3 and 4 revealed that AMTTO acts in 2 as a bidentate ligand via nitrogen and sulfur atoms, in 3 and 4 as a monodentate via sulfur atoms. Complex 3 was already mentioned in literature, but the structure was not described in detail. The molecules in 2 form infinite chains through additional weak Cu—S interactions along [010] indicating the Jahn‐Teller distortion of the d9 ion Cu2+. The infinite chains are connected by hydrogen bonding along [100]. Crystal data for 2 at —80°C: monoclinic, space group P21/m, a = 666.7(1), b = 609.4(1), c = 1132.6(2) pm, b = 95.46(2)°, Z = 2, R1 = 0.0365; for 3 at —80°C: orthorhombic, space group Pbcn, a = 1291.2(2), b = 1146.5(1), c = 1000.5(1) pm, Z = 4, R1 = 0.0315; for 4 at —80°C: monoclinic, space group, P21/n, a = 879.4(1), b = 1849.3(2), c = 2293.8(3) pm, β = 92.38(1)°, Z = 4, R1 = 0.0688.  相似文献   

19.
Polymorphism of Cs2NaMnF6. Crystal Structures of the High Pressure and the High Temperature Phase Cs2NaMnF6 has been prepared in three polymorphous forms and investigated by X-ray diffraction. Under high pressure (> 5 kbar) a cubic α-phase was formed with elpasolite structure (space group Fm3m, a = 876.2 pm, Z ? 4, R ? 0.045 for 12 powder reflections). By quenching from 700°C a high temperature γ-form could be trapped with 12L-Cs2NaCrF6 structure (space group R¯3m, Z = 6, Rw ? 0.041 for 419 independent single crystal reflections). The “normal” β-phase is a low symmetric variant of this 12L-type. The influence of the Jahn-Teller effect on the structures and the polymorphism is discussed.  相似文献   

20.
Oxometallates of a new Type: On Ba3NaNbO6 and Ba3NaTaO6 For the first time in form of colourless, transparent single crystals of Ba3NaNbO6 [annealed mixtures of BaO, Na2O and Nb2O5, Ba : Na : Nb = 3.3 : 1.1 : 1, Ni-cylinder, 1100°C, 3d] as well as Ba3NaTaO6 [annealed mixtures of BaO, Na2O and Ta2O5, Ba : Na : Ta = 3.3 : 1.1 : 1, Ni-cylinder, 1100°C, 3d] have been prepared. The crystal structure was solved by fourcycle-diffractometer data [Ba3NaNbO6: Mo? Kα , 356 out 356 I0 (hkl), space group R3 c with a = 1026.6(1)pm, c = 1195.3(2)pm (Guinier-Simon powder data), Z = 6, R = 2.4%, Rw = 2.0% and Ba3NaTaO6: Ag? Kα , 498 out of 498 I0 (hkl), space group R3 c with a = 1027.6(1)pm, c = 1196.0(2)pm (Guinier-Simon powder data), Z = 6, R = 4.9%, Rw = 4.4%], parameters see text. The Ba3M part of structure (M = Nb, Ta) corresponds to a slightly (hexagonal) deformed Nb3Al arrangement with Na inserted along [001] between adjacent Mv, which are nearly perfectly octahedrally surrounded by 6 O. The structural relations are deduced by Schlegel Diagrams. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, the latter derived from Mean Effective Ionic Radii, MEFIR, as well as Charge Distribution, CHARDI, are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号