首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contributions tot he Chemistry of Phosphorus. 148. Synthesis and Properties of the 1,2-Diphospha-3,4-diboretane (t-BuP)2(BNMe2)2 The first 1, 2-diphospha-3,4-diboretane (1,2-diphospha-3, 4-diboracyclobutane) (t-BuP)2(BNMe2)(1) was prepared by [2+2] cyclocondensation of K(t-Bu)P? P(t-Bu)K with Cl(Me2N)B? B(NMe2)Cl. 1 could be isolated in the pure state and was NMR spectroscopically characterized as a compound with a planar P2 B2 ring skeleton.  相似文献   

2.
Phosphoraneiminato Complexes of Boron. Syntheses and Crystal Structures of [BBr2(NPMe3)]2, [B2Br3(NPiPr3)2]Br, [B2(NPEt3)4]Br2, [B2Br2(NPPh3)3]BBr4 and [{B2(NMe2)2}2(NPEt3)2]Cl The bromoderivatives of the title compounds are prepared from the corresponding silylated phosphoraneimines Me3SiNPR3 and boron tribromide. The boron subcompound [{B2(NMe2)2}2(NPEt3)2]Cl2 derives from Me3SiNPEt3 and B2Cl2(NMe2)2. All complexes are characterized by NMR and IR spectroscopy as well as by crystal structure determinations. [BBr2(NPMe3)]2 (1): Space group P21/n, Z = 2, R = 0.031. Lattice dimensions at ?50°C: a = 723.8, b = 894.2, c = 1305.4 pm, β = 92.35°. 1 forms centrosymmetric molecules in which the boron atoms are linked via μ2-N bridges of the NPMe3? groups of from B2N2 four-membered rings with B? N distances of 149.9 and 150.9 pm. B2Br3(NPiPr3)2]Br (2): Space group P21, Z = 2, R = 0.059. Lattice dimensions at ?80°C: a = 817.6, b = 2198.7, c = 851.5 pm, β = 115.09°. In the cations of 2 the boron atoms are lined via the μ2-N atoms of the NPiPr3? groups to form planar, asymmetric B2N2 four-membered rings with B? N distances of 143 and 156 pm. [B2(NPEt3)4[Br2·4CH2Cl2 (3): Space group C2/c, Z = 4, R = 0.042. Lattice dimensions at ?50°C: a = 1946.1, b = 1180.3, c = 2311.3 pm, β = 101.02°. The structure contains centrosymmetric dications in which both the boron atoms are lined by the N atoms of two of the NPEt3? groups to form a B2N2 four-membered ring with B? N distances of 149.6 pm. The remaining two NPEt3? groups are terminally bonded with very short B? N distances of 133.5 pm. B2Br2(NPPh3)3]BBr4 (4): Space group P1 , Z = 2, R = 0.065. Lattice dimension at ?50°C: a = 1025.7, b = 1496.1, c = 1807.0 pm, α = 85.09°, β = 82.90°, γ = 82.72°. In the cation the boron atoms are lined via the μ2-N atoms of two of the NPPh3? groups to form a nearly planer B2N2 four-membered ring with B? N distances of 149.3-153.1 pm. The third NPPh33 group is terminally connected with teh sp2 hybridized boron atom and with a B? N distance of 134.1 pm along with an almost linear BNP bond angle of 173.6°. [{B2(NMe2)2}2(NPEt2)2]Cl2 · 3CH2Cl2 (5): Space group C2/c, Z = 4, R = 0.098. Lattice dimensions at ?70°C: a = 1557.9, b = 1294.7, c = 2122.9 pm, β = 96.08°. The structure of 4 contains centrosymmetric dications in which two by two B-B dumb-bells are linked via the μ2-N atoms of the two NEPt3? groups to form B4N2 six-membered rings with B? N distances of 150 and 156 pm and B-B distances of 173 pm. The B? N distances of the terminally bonded NMe2? groups correspond to 138 pm double bonds.  相似文献   

3.
The reaction of [(Cp*Mo)2(μ‐Cl)2B2H6] ( 1 ) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO)2}2{μ‐η22‐B2H4}] ( 2 ). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged Cs structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum–alkyne complex [{CpMo(CO)2}2C2H2]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO)4] fragment, [{Cp*Mo(CO)2}2 B2H2W(CO)4] ( 3 ) was isolated upon treatment with [W(CO)5?thf]. Compound 3 shows the intriguing presence of [B2H2] with a short B?B length of 1.624(4) Å. We isolated the tungsten analogues of 3 , [{Cp*W(CO)2}2B2H2W(CO)4] ( 4 ) and [{Cp*W(CO)2}2B2H2Mo(CO)4] ( 5 ), which provided direct proof of the existence of the tungsten analogue of 2 .  相似文献   

4.
The reaction of [(Cp*Mo)2(μ‐Cl)2B2H6] ( 1 ) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO)2}2{μ‐η22‐B2H4}] ( 2 ). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged Cs structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum–alkyne complex [{CpMo(CO)2}2C2H2]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO)4] fragment, [{Cp*Mo(CO)2}2 B2H2W(CO)4] ( 3 ) was isolated upon treatment with [W(CO)5⋅thf]. Compound 3 shows the intriguing presence of [B2H2] with a short B−B length of 1.624(4) Å. We isolated the tungsten analogues of 3 , [{Cp*W(CO)2}2B2H2W(CO)4] ( 4 ) and [{Cp*W(CO)2}2B2H2Mo(CO)4] ( 5 ), which provided direct proof of the existence of the tungsten analogue of 2 .  相似文献   

5.
Bis‐trimethylamine‐ethynyl‐di‐bis(trifluoromethyl)borane [Me3N(CF3)2BCCB(CF3)2NMe3] ( 1 ) has been prepared from trimethylamine‐ethynyl‐bis(trifluoromethyl)borane, [HCCB(CF3)2NMe3], and dimethylamino‐bis(trifluoromethyl)borane, (CF3)2BNMe2. The structure of 1 has been determined by x‐ray crystallography. In the solid state the molecule possesses crystallographic Ci symmetry. The acetylenic attachment to the boron atom is characterized by a short B–C bond length of 1.565(4) Å and an essentially linear B–C–C′ bond angle of 178.1(4)°.  相似文献   

6.
Synthesis and Crystal Structure of [P(C6H5)4][2,9-{N,N′-(2-NH? (C5H4N))}B10H8] [N(C4H9)4]2[B10H10] reacts with 2-aminopyridine forming a product mixture from which [2,9-{N,N′-(2-NH? (C5H4N))}B10H8]? can be isolated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose. The crystal structure of [P(C6H5)4][2,9-{N,N′-(2-NH? (C5H4N))}B10H8] (triclinic, space group P1 , a = 10.1103(9), b = 11.5665(9), c = 14.877(2) Å, α = 102.600(8), β = 107.567(8) und γ = 96.487(7)°, Z = 2) reveals the bonding of 2-NH2-(C5H4N) via both N atoms to vicinal B atoms of the two square planes of the B10 cluster (B2? N1 = 1,541(7) und B9? N2 = 1.505(7) Å) forming a five-membered ring.  相似文献   

7.
Concerning the Reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] – Crystal Structure of [C(NMe2)3]2[FeCl4] The title compound forms by the reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] in THF solution. It crystallizes in the space group Pbcn with a = 1 566.6(3); b = 976.4(2); c = 1 580.4(4) pm; Z = 4; R = 3.8%. Each [FeCl4]2? in is surrounded by eight cations. Two cations each are connected with one Cl atom by relatively short H …? Cl contacts leading to a distortion of the tetrahedral geometry of the anion.  相似文献   

8.
Crystal Structure of Tetraphenylphosphonium Monothiocyanatohydro-closo-Decaborate, [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN The X-ray structure determination of [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN (monoclinic, space group P21/n, a = 10.6040(10), b = 13.8880(9), c = 33.888(3) Å, β = 94.095(8)°, Z = 4) reveals the S coordination of the SCN substituent with a B? S distance of 1.913(6) Å and a B? S? C angle of 105.3(3)°. The SCN group is nearly linear (178.2(7)°).  相似文献   

9.
Diphenyl-o-silaborane ( 1 ) can be obtained by sublimation as colourless crystalline material in a yield of 23%. The disilaborane 1 was characterized by NMR spectroscopy, mass spectrometry and X-ray structure analysis. The neutral closo cluster 1 reacts with [Zr(NMe2)4] or [Ta(NMe2)5] to give the dimethylamide adduct [(Me2N)(PhSi)2B10H10] of the disilaborane.  相似文献   

10.
Synthesis and Crystal Structure of [C(NMe2)3]2[(CO)4Fe(μ‐InCl2)2Fe(CO)4] Treatment of [C(NMe2)3]2[(CO)4FeInCl3] ( 1 ) with hot water produces the dinuclear complex [C(NMe2)3]2[(CO)4Fe(μ‐InCl2)2Fe(CO)4] ( 2 ) which could be crystallized from dichloromethane/pentane. 2 crystallizes in the monoclinic space group P21/n with a = 835.7(1), b = 1187.8(1), c = 1902.7(1) pm, β = 91.877(5)° and Z = 2. The anion contains a four‐membered Fe—In—Fe—In ring with octahedral environment at the iron atom and tetrahedral coordination at the In atom.  相似文献   

11.
Two new borosulfates were obtained either by an open vessel synthesis from sulfuric acid and B(OH)3, yielding (NH4)3[B(SO4)3] or from solvothermal synthesis in oleum enriched sulfuric acid and B(OH)3, yielding Sr[B2(SO4)4]. (NH4)3[B(SO4)3] crystallizes homeotypic to K3[B(SO4)3] in space group Ibca (Z = 8, a = 728.58(3) pm, b = 1470.84(7) pm, c = 2270.52(11) pm), comprising open branched vierer single chains {1[B(SO4)2(SO4)2/2]3–}. Sr[B2(SO4)4] crystallizes as an ordered variant of Pb[B2(SO4)4] in space group Pnna (Z = 4, a = 1257.4(4) pm, b = 1242.1(4) pm, c = 731.9(2) pm), consisting of loop branched vierer single chains {1[B(SO4)4/2]2–}. Vibrational spectroscopy confirms both refined structure models. Thermal analysis of the dried powders, showed a decomposition towards the binary and ternary components, whereas a thermal treatment in the presence of the mother liquor promotes a decomposition of Sr[B2(SO4)4] towards Sr[B2O(SO4)3].  相似文献   

12.
The room‐temperature reaction of [Cp*TaCl4] with LiBH4?THF followed by addition of S2CPPh3 results in pentahydridodiborate species [(Cp*Ta)2(μ,η22‐B2H5)(μ‐H)(κ2,μ‐S2CH2)2] ( 1 ), a classical [B2H5]? ion stabilized by the binuclear tantalum template. Theoretical studies and bonding analysis established that the unusual stability of [B2H5]? in 1 is mainly due to the stabilization of sp2‐B center by electron donation from tantalum. Reactions to replace the hydrogens attached to the diborane moiety in 1 with a 2 e {M(CO)4} fragment (M=Mo or W) resulted in simple adducts, [{(Cp*Ta)(CH2S2)}2(B2H5)(H){M(CO)3}] ( 6 : M=Mo and 7 : M=W), that retained the diborane(5) unit.  相似文献   

13.
The preparation and structures of three diborane(4) compounds are described. The compound B2(3,4‐S2C4H2‐1‐S)2 [2,2′‐bi(1,3,5,2‐tri­thia­borapentalene), C8H4B2S6] is planar and lies at a crystallographic inversion centre. The amine adducts [B2(C3S5)2(NHMe2)2] [2,2′‐bis­(di­methyl­amino)‐2,2′‐bi(1,3,4,6,2‐tetra­thia­borapentalene‐5‐thione), C10H14B2N2S10] and [B2(1,2‐S2C2H4)2(NHMe2)2]·0.33CH2Cl2 [1,2‐bis­(di‐methylamino)‐1,1:2,2‐bis(dimethylenedithioxy)diborane(4) di­chloro­methane solvate, C8H22B2N2S4·0.33CH2Cl2] contain di­methyl­amine ligands bound to each boron in an anti conformation about the B—B bond, with tetrahedral geometry at the B atoms. The crystal structures display a number of S?S interactions, which appear to dictate the packing arrangements.  相似文献   

14.
Contributions to the Chemistry of Phosphorus. 245, LiP7(BNEt2)2 and P7(BNEt2)4Cl: Two Novel Polycyclic Boraphosphanes The directed synthesis of a noval tetracyclic heteropolyphosphane skeleton from a tricyclophosphane has been achieved by condensation of Li3P7 · 3DME with Cl(Et2N)B‐B(NEt2)Cl to the diboranonaphosphanide LiP7(BNEt2)2 ( 1 ). When the reaction proceeds the mixed‐substituted diboranonaphosphane P7(BNEt2)4Cl ( 2 ) is formed. According to their 31P NMR spectra 1 and 2 possess a B2P7(3) skeleton analogous to that of the hydrocarbon deltacyclane. Additional weak signals in the 31P NMR spectrum of 2 indicate that also small amounts of the symmetrically substituted diborane(4) P14B6(NEt2)6 ( 3 ) are formed.  相似文献   

15.
The Reactions of CH2=P(NMe2)3 with Fe(CO)5, Cr(CO)6, and CS2; Molecular Structures of [MeP(NMe2)3][(CO)5CrC(O)CH=P(NMe2)3], and (CO)4Fe=C(OMe)CH=P(NMe2)3 The ylide CH2=P(NMe2)3 ( 1 ) reacts with several binary transition metal carbonyls M(CO)x to produce the corresponding salt like compounds [MeP(NMe2)3][(CO)x–1MC(O)CH=P(NMe2)3] (M = Fe ( 3 ), Cr ( 4 )). The related reaction with CS2 leads to the salt [MeP(NMe2)3][SC(S)CH=P(NMe2)3] ( 2 ). While 4 is thermally stable, 3 rapidly decomposes at room temperature with formation of [MeP(NMe2)3]2[Fe2(CO)8] ( 8 ). Alkylation of 3 (at –50 °C) and 4 with MeSO3CF3 produces the related carbene complexes (CO)x–1M=C(OMe)CH=P(NMe2)3 ( 5 ) and ( 6 ); the reaction of 3 with Me3SiCl results in the formation of the carbene complex (CO)4Fe=C(OSiMe3)CH=P(NMe2)3 ( 7 ). 4 crystallizes in the space group P212121 (No. 19) with a = 1111.1(2), b = 1476.1(3), c = 1823.1(4) pm and Z = 4. 5 crystallizes in the space group P21/n (No. 14) with a = 1303.6(3), b = 910.5(4), c = 1627.0(4) pm, β = 96.06(2)° and Z = 4. The compounds have been characterized by elemental analyses, NMR (1H, 13C, 31P) and IR spectroscopy.  相似文献   

16.
N‐sulfinylacylamides R‐C(=O)‐N=S=O react with (CF3)2BNMe2 ( 1 ) to form, by [2+4] cycloaddition, six‐membered rings cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(R)‐O for R = Me ( 2 ), t‐Bu ( 3 ), C6H5 ( 4 ), and p‐CH3C6H4 ( 5 ) while N‐sulfinylcarbamic acid esters R‐O‐C(=O)‐N=S=O react with 1 to yield mixtures of six‐membered (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(OR)‐O) and four‐membered rings (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N(C=O)OR) for R = Me ( 6 and 9 ), Et ( 7 and 10 ), and C6H5 ( 8 and 11 ). The structure of 5 has been determined by X‐ray diffraction.  相似文献   

17.
Niobium and Tantalum Complexes with P2 and P4 Ligands The photolysis of [Cp″Ta(CO)4] 1 (Cp″ = C5H3tBu2?1,3) and P4 affords Cp″(CO)2Ta(η4?P4) 2 , [{Cp″(CO)Ta}2(m??η2:2?P2)2] 3 and [Cp3″(CO)3Ta3(P2)2] 4 . In a photochemical reaction 2 and [Cp*Nb(CO)4] 5 form [{Cp*(CO)Nb}{Cp″(CO)Ta}(m??η2:2?P2)2] 6 and [{Cp*(CO)2Nb} {Cp*Nb}{Cp″(CO)Ta}(m?32:1:1?P2)2] 7 , a compound with the novel m?32:2:1?P2-coordination mode. The reaction of 2 and [Cp*Co(C2H4)2] 8 leads to [{Cp*Co} {Cp″(CO)Ta}(m??η2:2?P2)2] 9 , a heteronuclear complex with an ?early”? and a ?late”? transition metal. Complexes 2, 3, 7 and 9 have been further characterized by X-ray structure analyses.  相似文献   

18.
Reaction of the ferrocenyl(dimethylamino)boranes FcB(Me)NMe2, Fc2BNMe2, and 1,1′-fc[B(Me)NMe2]2 with 1:1 mixtures of pyrazole and potassium pyrazolide in refluxing THF gave the potassium salts of the ferrocene-based bis(pyrazol-1-yl)borate ligands FcB(Me)pz2K, Fc2Bpz2K, and 1,1′-fc[B(Me)pz2]2K2 in good yield (Fc: ferrocenyl, fc: ferrocenylene, pz: pyrazolyl). In the solid state, FcB(Me)pz2K and Fc2Bpz2K form centrosymmetric dimers with short K?Cp contacts suggesting an η5 coordination mode of the potassium ion. The crystal lattice of the ditopic ligand 1,1′-fc[B(Me)pz2]2K2 consists of coordination polymer strands featuring essentially the same structural motif that has been observed for the monotopic derivatives. All three scorpionate ligands are thus promising building blocks for the preparation of ferrocene-containing multiple-decker sandwich complexes.  相似文献   

19.
The IrIII fragment {Ir(PCy3)2(H)2}+ has been used to probe the role of the metal centre in the catalytic dehydrocoupling of H3B?NMe2H ( A ) to ultimately give dimeric aminoborane [H2BNMe2]2 ( D ). Addition of A to [Ir(PCy3)2(H)2(H2)2][BArF4] ( 1 ; ArF=(C6H3(CF3)2), gives the amine‐borane complex [Ir(PCy3)2(H)2(H3B?NMe2H)][BArF4] ( 2 a ), which slowly dehydrogenates to afford the aminoborane complex [Ir(PCy3)2(H)2(H2B? NMe2)][BArF4] ( 3 ). DFT calculations have been used to probe the mechanism of dehydrogenation and show a pathway featuring sequential BH activation/H2 loss/NH activation. Addition of D to 1 results in retrodimerisation of D to afford 3 . DFT calculations indicate that this involves metal trapping of the monomer–dimer equilibrium, 2 H2BNMe2 ? [H2BNMe2]2. Ruthenium and rhodium analogues also promote this reaction. Addition of MeCN to 3 affords [Ir(PCy3)2(H)2(NCMe)2][BArF4] ( 6 ) liberating H2B? NMe2 ( B ), which then dimerises to give D . This is shown to be a second‐order process. It also allows on‐ and off‐metal coupling processes to be probed. Addition of MeCN to 3 followed by A gives D with no amine‐borane intermediates observed. Addition of A to 3 results in the formation of significant amounts of oligomeric H3B?NMe2BH2?NMe2H ( C ), which ultimately was converted to D . These results indicate that the metal is involved in both the dehydrogenation of A , to give B , and the oligomerisation reaction to afford C . A mechanism is suggested for this latter process. The reactivity of oligomer C with the Ir complexes is also reported. Addition of excess C to 1 promotes its transformation into D , with 3 observed as the final organometallic product, suggesting a B? N bond cleavage mechanism. Complex 6 does not react with C , but in combination with B oligomer C is consumed to eventually give D , suggesting an additional role for free aminoborane in the formation of D from C .  相似文献   

20.
Borosulfates are an ever‐expanding class of compounds and the extent of their properties is still elusive. Herein, the first two copper borosulfates Cu[B2(SO4)4] and Cu[B(SO4)2(HSO4)] are presented, which are structurally related but show different dimensionalities in their substructure: While Cu[B2(SO4)4] reveals an anionic chain, [B(SO4)4/2]?, with both a twisted and a unique chair conformation of the B(SO4)2B subunits, Cu[B(SO4)2(HSO4)] reveals isolated [B2(SO4)4(HSO4)2]4? anions showing exclusively a twisted conformation. The complex anion can figuratively be obtained as a cut‐out from the anionic chain by protons. Comparative DFT calculations based on magnetochemical measurements complement the experimental studies. Calculation of the pKa values of the two conformers of the [B2(SO4)4(HSO4)2]4? anion revealed them to be more similar to silicic than to sulfuric acid, highlighting the close relationship to silicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号