首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the adsorption of water vapor onto activated carbons is important for designing processes to remove dilute contaminants from humid gas streams, such as providing protection against chemical warfare agents (CWAs), or against toxic industrial compounds (TICs) used in a terrorist chemical attack. Water vapor isotherms for Calgon BPL granular activated carbon (GAC), military ASZM-TEDA GAC, electrospun activated carbon nanofibers (ACnF), Calgon Zorflex activated carbon cloth, and Novoloid-based activated carbon fiber cloth (ACFC) are presented. Of particular interest are the ACFC isotherms, which exhibit an unusually high degree of hydrophobicity. The ACFC isotherms also show a correlation between water vapor adsorption hysteresis and the level of activation. Water vapor isotherm models from the literature are compared.  相似文献   

2.
Fixed bed adsorption experiments were performed using four granular activated carbon (GAC) columns designed by packing two size ranges of pulverized and sieved Filtrasorb 400 (d=0.5-0.59 and 1.0-1.19 mm) to two bed depths (L=10 and 20 cm), respectively. Continuous supplying of river water containing a lower content of natural organic matter (NOM) allowed investigation of the breakthrough of aqueous natural organic matrices assessed with lumped quality indices of total dissolved organic carbon (DOC) and ultraviolet absorbance at 260 nm (UV260). The capability of GAC columns in dealing with sudden rise in the load of influent NOM was also displayed by intermittently adding to the influent river water a peaty field groundwater that contained a higher content of NOM. Besides, assisted by the size-exclusion HPLC (SEHPLC), changes in the apparent molecular weight distribution of NOM along the bed depth of GAC columns were evaluated, and an important finding revealing relatively even adsorption for adsorbable NOM constituents within the entire molecular weight range of 1000-5200 g mol−1 as PSS (polystyrene sulfonates) detected for the river and groundwater NOM was obtained. Furthermore, using a previously proposed hypothetical multi-component approach incorporating the ideal adsorbed solution theory and a plug flow homogeneous surface diffusion model, the observed concentration profiles of the river water NOM were predicted.  相似文献   

3.
The adsorption and desorption characteristics of some phenoxy herbicides (CPA 2,4-D, and MCPA) from an aqueous solution on the active carbon materials (GAC, F-400) were studied. Adsorption equilibrium capacities of the phenoxy herbicides increased with a decrease in pH of the solution. Adsorption equilibrium isotherms were represented by the Sips equation. Kinetic parameters were measured in a batch adsorber to analyze the adsorption rates of the phenoxy herbicides. The internal diffusion coefficients were determined by comparing the experimental concentration curves with those predicted from the surface diffusion model and the pore diffusion model. The adsorption model based on the linear driving force approximation (LDFA) was used to simulate the adsorption behavior of the phenoxy herbicides in a fixed bed adsorber. Over 95 percent desorption of the phenoxy herbicides was obtained using distilled water.  相似文献   

4.

The change in the thermodynamic properties of triclosan adsorption on three activated carbons with the different surface chemistry was studied through immersion calorimetry and equilibrium data; the amount adsorbed of triclosan (Q) during calorimetry was determined and correlated with the energy associated with adsorbate–adsorbent interactions in the adsorption process. It was noted that triclosan adsorption capacity decreases with an increase in oxygenated surface groups. For an activated carbon oxidized with HNO3 (OxAC), the amount adsorbed was 8.50?×?10?3 mmol g?1, for a activated carbon without modification (GAC) Q?=?10.3?×?10?3 mmol g?1 and for a activated carbon heated at 1073 K (RAC1073) Q?=?11.4?×?10?3 mmol g?1. The adsorbed amounts were determined by adjusting the isotherms to the Sips model. For the activated carbon RAC1073, the immersion enthalpy (ΔHimm) was greater than those of the other two activated carbons due to the formation of interactions with the solvent (ΔHimmOxAC?=?? 27.3 J g?1?<?ΔHimmGAC?=?? 40.0 J g?1?<?ΔHimm RAC1073?=???60.7 J g?1). The changes in the interaction enthalpy and Gibbs energy are associated with adsorbate–adsorbent interactions and side interactions such as the adsorbate–adsorbate and adsorbate–solvent interactions.

  相似文献   

5.
The current study discusses application of the lanthanum ions (La3+) as an activating agent incorporated /immobilized into coconut shell–based granular activated carbon (GAC) for porosity development; subsequently, the carbon material is used for the adsorption of phenol from aqueous solutions. The new carbons were characterized using FTIR, XRD, CHNO, burn off, and carbon yield. The surface functional groups were determined by Boehm titration. The Brunauer–Emmett–Teller (BET) surface area of the carbons is 953 m2 g−1 (GACLa1073), 997 m2 g−1 (GAC383), and 973 m2 g−1 (GACO383). Langmuir, Freundlich, Dubinin–Radushkevich, and John–Sivanandan Achari (J-SA) isotherm models on the equilibrium isotherm data were examined for the new carbon-phenol system. It is found that the Langmuir isotherm fits better with a monolayer adsorption capacity, highest for GACLa1073 (387.59 mg g−1) followed by GAC383 (303.03 mg g−1) and GACO383 (197.62 mg g−1). Kinetic studies reveal that the adsorption system follows the pseudo–second-order kinetic model. Isotherm analysis by the phase change method of John-Sivanandan Achari (J-SA) isotherm gives a better insight into adsorption phenomena, which is accompanied by regeneration studies of carbon with >75% for GACLa1073 after three cycles.  相似文献   

6.
Granular activated carbon (GAC) filters were installed in 12 private homes or vacation homes for removing unacceptably high concentrations of radon from household water. Radon removal efficiency was nearly 100% in most locations, although different water types were encountered. Other radionuclides such as uranium, radium, lead and polonium were removed less efficiently. Treated water quality remained good and no significant external radiation dose was caused to the residents.  相似文献   

7.
Adsorption equilibrium and kinetics of 2-chlorophenol (2-CP) one of the chlorophenols (CPs) onto bituminous coal based Filtrasorb-400 grade granular activated carbon and three different types of polymeric adsorbents were studied in aqueous solution in a batch system. Langmuir isotherm models were applied to experimental equilibrium data of 2-CP adsorption. Equilibrium data fitted very well to the Langmuir equilibrium models of 2-CP. Adsorbent monolayer capacity Q Langmuir constant b and adsorption rate constants k a were evaluated. 2-CP adsorption using GAC is very rapid in the first hour of contact where 70–80% of the adsorbate is removed by GAC followed by a slow approach to equilibrium. Whereas in case of polymeric adsorbents 60–65% of the adsorbate is removed in the first 30 min which is then followed by a slow approach to equilibrium. The order of adsorption of 2-CP on different adsorbents used in the study is found to be in following order: F-400 > XAD-1180 > XAD-4 > XAD-7HP.  相似文献   

8.
The adsorption of Chromium(VI) from aqueous solutions was studied on different commercial grades of granular activated carbon namely Filtrasorb F‐400, F‐300, F‐200 and F‐100. The adsorption of Chromium (VI) on F‐400 carbon was found to be maximum in comparison to the other grades of carbon. The Chromium (VI) adsorption process in dilute aqueous solutions agreed with the Langmuir and Freundlich models and also obeyed first order kinetics. Metal sorption characteristics of as received activated carbons were measured in batch experiments. The maximum removal (60–65%) for different grades of raw carbon was observed at 25 °C with an initial concentration of 15.16 mg dm?3. It is evident from the study that granular activated carbon holds a particular promise in the removal of metal ions from aqueous solutions.  相似文献   

9.
The present study analyses the preparation of activated carbon fibres (ACFs) by the so-called “physical” activation method with steam or carbon dioxide and their application for benzene and toluene adsorption at low concentration (200 ppmv). ACFs have been scarcely studied for the adsorption of these pollutants at low concentration in gaseous phase, despite their interesting features regarding adsorption kinetics, bed pressure drop, possibility of conformation and others. Our results have shown that the preparation method used is suitable to produce ACFs with high adsorption capacities for benzene and toluene at the low concentration used. The fibre morphology of the ACFs does not enhance their performance, which results to be similar to other non-fibrous activated carbons such as granular, pellets and powders. Such good performance of the ACFs, leading to benzene and toluene adsorption capacities as large as 31 g benzene/100 g ACF or 53 g toluene/100 g ACF, can be explained due to their large volume of narrow micropores (<0.7 nm) developed upon activation and their low content in surface oxygen groups. Our results have also shown very good agreement between the adsorption results derived from dynamic adsorption experiments and from adsorption isotherms. As the relative pressure of the organic compound increases the corresponding fraction of narrow micropore volumes filled by benzene and toluene increases. For a given low and comparable relative pressure, toluene always occupies a larger fraction of narrow micropores than benzene.  相似文献   

10.
The impact of ozonation on textural and chemical surface characteristics of two granular activated carbons (GAC), namely F400 and AQ40, and their ability to adsorb phenol (P), p-nitrophenol (PNP), and p-chlorophenol (PCP) from aqueous solutions have been studied. The porous structure of the ozone-treated carbons remained practically unchanged with regard to the virgin GAC. However, important modifications of the chemical surface and hydrophobicity were observed from FTIR spectroscopy, pH titrations, and determination of pH(PZC). As a rule, the ozone treatment at either room temperature (i.e., about 25 degrees C) or 100 degrees C gave rise to acidic surface oxygen groups (SOG). At 25 degrees C primarily carboxylic acids were formed while a more homogeneous distribution of carboxylic, lactonic, hydroxyl, and carbonyl groups was obtained at 100 degrees C. The experimental isotherms for phenolic compounds on both GAC were analyzed using the Langmuir model. Dispersive interactions between pi electrons of the ring of the aromatics and those of the carbon basal planes were thought to be the primary forces responsible for the physical adsorption whereas oxidative coupling of phenolic compounds catalyzed by basic SOG was a major cause of irreversible adsorption. The exposure of both GAC to ozone at room temperature decreased their ability to adsorb P, PNP, and PCP. However, when ozone was applied at 100 degrees C adsorption was not prevented but in some cases (P and PNP on F400) the adsorption process was even enhanced.  相似文献   

11.
Magnetic powder resin Q150 with high specific surface area of 1074 m~2/e was prepared by the membrane emulsificationsuspension polymerization technique.Adsoption of tetracycline on the obtained sorbent Q150 was evaluted by using the granule resin(GR) XAD-4,the powder activated carbon(PAC) 1240AC and the granule activated carbon(GAC) HD4000 for comparison.It was found that Q150 had a larger adsorption capacity,faster kinetic and easier regeneration under alkaline condition.The results suggested that the powder resin(PR) Q150 would be a promising sorbent for removing antibiotics and even other organic micropollutants from the aquatic environment.  相似文献   

12.
The paper investigates the changes in porosity (i.e., in the accessible adsorption capacity of carbonaceous adsorbents for pollutants during filter bed maturation) of three activated carbons applied in a filter bed pilot operation. The results of this investigation may help to reduce operating costs, increase granular activated carbon bed life, maximize the useful life of biofilters, and understand the mechanism of water purification by carbon adsorbents. The analysis of the pore structure was limited to the first year of service of the beds, since this was when the largest decrease in the available pore capacity occurred. Low-temperature nitrogen adsorption isotherms were used to evaluate the structural parameters and pore size distributions (PSDs) of carbon samples (virgin (reference) and mature adsorbents for different periods of water treatment) on the basis of the Nguyen and Do (ND) method and density functional theory (DFT). These results were compared with small-angle X-ray scattering (SAXS) investigations (PSDs calculated by Glatter's indirect transformation method (ITP)). The results show that in general, the ND and ITP methods lead to almost the same qualitative distribution curve behavior. Moreover, the enthalpy of immersion in water, mercury porosimetry, densities (true and apparent), and the analysis of ash are reported and compared to explain the decrease in adsorptive capacity of the carbons investigated. On the other hand, the efficacy of TOC (total organic carbon, i.e., a quantity describing the complex matrix of organic material present in natural waters) removal and the bacteria count were analyzed to explain the role of adsorption in the elimination of contaminants from water. Finally, a mechanism of organic matter removal was suggested on the basis of the above-mentioned experimental data and compared with mechanisms reported by other authors.  相似文献   

13.
Granular Activated Carbon (GAC), a commercial adsorbent for the removal of heavy metals was treated chemically with potassium bromate for it’s surface modification and it’s adsorption capacity was investigated with nickel ions. There was an increase in the adsorption capacity of the modified carbon by 90–95% in comparison to the raw granular activated carbon towards nickel ion adsorption. Potassium Bromate oxidation treatment was employed for a period of about 30 mins initially followed by 60 mins and the oxidized carbons were adsorbed with nickel ions. Metal sorption characteristics of as received and modified activated carbons were measured in batch experiments. Batch adsorption was successfully modeled by Langmuir Isotherm Model which indicates monolayer adsorption. The adsorption isotherms also fit well to the Freundlich Model. Effects of pH of initial solution, time of oxidation and mode of treatment on the adsorption process were studied. Experimental results showed that metal uptake increased with an increase in pH and oxidation time. The samples were characterized by Scanning Electron Microscope (SEM) studies and surface area analyzer.  相似文献   

14.
The objective of the present investigation was to determine the effectiveness of activated carbon in removing sodium dodecylbenzenesulfonate (SDBS) and to analyze the chemical and textural characteristics of the activated carbons that are involved in the adsorption process. Studies were also performed on the influence of operational variables (pH, ionic strength, and presence of microorganisms) and on the kinetics and interactions involved in the adsorption of this pollutant on activated carbon. The kinetics study of SDBS adsorption revealed no problems in its diffusion on any of the activated carbons studied, and Weisz-Prater coefficient (C WP) values were considerably lower than unity for all activated carbons studied. SDBS adsorption isotherms on these activated carbons showed that: (i) adsorption capacity of activated carbons was very high (260-470 mg/g) and increased with larger surface area; and (ii) dispersive interactions between SDBS and carbon surface were largely responsible for the adsorption of this pollutant. SDBS adsorption was not significantly affected by the solution pH, indicating that electrostatic adsorbent-adsorbate interactions do not play an important role in this process. The presence of electrolytes (NaCl) in the medium favors SDBS adsorption, accelerating the process and increasing adsorption capacity. Under the working conditions used, SDBS is not degraded by bacteria; however, the presence of bacteria during the process accelerates and increases SDBS adsorption on the activated carbon. Microorganism adsorption on the activated carbon surface increases its hydrophobicity, explaining the results observed.  相似文献   

15.
Eucalyptus grandis sawdust, a major waste from the growing Uruguayan wood industry, was used in previous work to prepare powdered activated carbon (PAC). In the present work, granular activated carbon (GAC) was prepared by mixing PAC, carboxymethyl cellulose as a binder, and kaolin as reinforcer. Ultimate analysis and surface characterization of GAC and PAC were performed. Phenol adsorption was used as a way to compare the characteristics of different PAC and GAC preparations. Kinetics and isotherms of the different GAC and PAC were performed in a shaking bath at 100 rpm and 298 K. Phenol concentrations were determined by UV spectroscopy. Some kinetics parameters were calculated; from kinetics results, external resistance to mass transfer from the bulk liquid can be neglected as the controlling step. Isotherms were fitted to Langmuir and Freundlich models, and corresponding parameters were determined. Maximum phenol uptakes for all carbons were determined and correlated with carbon characteristics. Thermogravimertic analysis (TGA) determinations were performed in order to study adsorption characteristics and conditions for GAC regeneration after its use. The results showed that phenol is preferentially physisorbed on the carbon of the granules, though some chemisorption was detected. No adsorption was detected in the kaolin-carboxymethyl cellulose mixture.  相似文献   

16.
Aqueous 1,1,2-trichloroethene (TCE) adsorption isotherms were obtained on Ambersorb 563 and 572 adsorbents and Filtrasorb 400 granular activated carbon (GAC). The data for Ambersorb 563 adsorbent covers TCE concentrations from 0.0009 to 600 mg/L. The data for each adsorbent was fit to 15 isotherm equations to determine an optimum equation.The best equation for the TCE adsorption isotherms is the Dubinin-Astakov (DA) isotherm. The DA isotherm coefficients were used to estimate the TCE micropore volume and the adsorption potential distribution. For each adsorbent, the TCE micropore volume is equivalent to the N2 porosimetry micropore volume. The mean adsorption potential is 18.8, 13.0, and 8.9 kJ/mol, with coefficients of variation of 0.37, 0.53, and 0.67, for Ambersorb 563 and 572 adsorbents and Filtrasorb 400 GAC, respectively. Thus, Ambersorb 563 adsorbent has the most energetic and most homogeneous adsorption volume, while Filtrasorb 400 GAC has the least energetic and most heterogeneous adsorption volume. For these reasons, Ambersorb 563 adsorbent has the highest TCE capacity at low concentrations, whereas Filtrasorb 400 GAC has the highest TCE capacity at high concentrations. The performance of Ambersorb 572 adsorbent is generally intermediate to the other two adsorbents.  相似文献   

17.
In order to address open questions concerning the surface chemistry and pore structure characterization of nanoporous carbons, we performed extensive experiments by combining various experimental techniques on a series of commercially available activated carbons which exhibit diverse surface chemistry characteristics. Pore size analysis was performed on Ar (87 K), N2 (77 K) and CO2 (273 K) adsorption isotherms using state-of-the art methods based on density functional theory, including the recently developed quenched solid density functional theory (QSDFT). A detailed study of the surface chemistry was obtained by applying temperature programmed desorption coupled with mass spectrometry (TPD-MS) as well as XPS (X-Ray-Photoelectron Scattering). This information together with the pore structure information leads to a reliable interpretation of systematic water adsorption measurements obtained on these materials. Our results clearly suggest that water adsorption is indeed a sensitive tool for detecting differences in surface chemistry between chemically and physically activated active carbon materials with comparable ultramicropore structure. The occurrence of sorption hysteresis associated with the filling of micro- and narrow mesopores (in a range where nitrogen and argon isotherms are reversible) provides additional structural information, complementary to the insights from argon/nitrogen/carbon dioxide adsorption.  相似文献   

18.
Removal nickel from the aquatic environment is a serious environmental problem in view of public health. The present article studies the applicability of activated carbon, obtained from graphite, as a source of adsorbents to remove nickel from the aqueous polluted water. Activated carbon was obtained by steam activation of graphite and then was oxidized by nitric acid followed by modification with Tetraethylenepentamine (TEPA). The applicability of graphite activated carbon (GAC), and modified activated carbon by Tetraethylenepentamine (GACA) to remove nickel ions Ni(II) from aqueous media was studied. The effect of pH, initial concentration, contact time, and the temperature was evaluated during Ni(II) removal operating in a batch process. Experimental results show that the studied activated carbon have a good adsorption capacity for Ni(II) ions and could reduce the concentrations of it in the groundwater. A maximum removal efficient of Ni(II) was observed at 55°C. The experimental data showed an endothermic and spontaneous process, which was fitted to Langmuir isotherm. Based on our results, we can conclude that it is possible to use GAC and GACA for removing Ni(II) effectively from groundwater.  相似文献   

19.
Water vapor adsorption for various activated carbons with narrow and wide micropore volume distributions and mesopore surface areas between 40 and 300 m2/g have been investigated. For all the isotherms the point of inflection was determined, which can be taken as the point characterizing the formation of a water adsorption layer on the pore wall surface of carbon adsorbents. To do this the adsorption and desorption branches of the isotherms were approximated according to Weibull's distribution. A good correlation was obtained between values for the water monolayer capacity, calculated from the porous structure parameters of the carbons, and the adsorption values corresponding to the isotherm inflection pointsa inf. For the group of carbons studied the values of relative pressure at the inflection point of the isotherms fell within the range 0.5–0.72.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 31–34, January, 1991.  相似文献   

20.
《印度化学会志》2023,100(4):100943
In the present study, cost effective activated carbon from wasteland biomass of Calotropis gigantea stem was prepared at 400 °C, 600 °C, 750 °C and 900 °C carbonization temperatures in normal atmosphere (NA) and at 600 °C, 750 °C in inert atmosphere (IA) of nitrogen by using Potassium Carbonate (K2CO3) as chemical activating agent in the impregnation ratios of 0.5, 1 and 2. Activated carbons prepared under NA and IA were characterized and compared. Field Emission Scanning Electron Microscopy (FESEM) study confirmed presence of micropores and mesopores. While Xray Diffraction (XRD) analysis confirmed presence of both disordered amorphous carbon humps and graphitic crystallite peaks. Presences of functional groups were more prominent in NAC; found from Fourier Transform Infra-Red Spectroscopy (FTIR) analysis. BET surface area at 750 °C at chemical impregnation ratio 1 under NA was recorded highest containing both micropores and mesopores. Disordered carbon structure was confirmed from RAMAN spectroscopic analysis and nanoporous structure of activated carbon was confirmed from HRTEM analysis. NA activated carbons processed from wasteland weed can be preferred for different adsorption related applications as they are reasonable with improved properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号