首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 983 毫秒
1.
The effects of variation in Al/Ti mole ratio, catalyst concentration, reaction time, and temperature on the yield and some physical properties of polymers of n-octadecene-1 obtained with the use of Ziegler catalyst systems derived from titanium tetrachloride and triethylaluminum have been investigated. Results show many features similar to those obtained by other workers with lower olefins. In general, the yield of polymer shows a distinct maximum at an Al:Ti mole ratio of 2.8:1 and total catalyst concentration (at the stated mole ratio) of 4%, based on monomer; the yield increases sharply with polymerization temperature to a maximum at about 40°C. and with time up to about 12 hr. at 25°C. Polymer intrinsic viscosity also shows a strong dependence on Al:Ti mole ratio and catalyst concentration, increasing between Al:Ti mole ratios of 2.0–3.4, and showing a maximum at catalyst concentration of 3.5% on monomer. Polymer intrinsic viscosity shows a decrease with increasing reaction temperature and an increase with time of polymerization. The polymer densities, melting points, and fraction soluble in hexane (at 25°C.) appear to show much less dependence on the variables under consideration, and no firm conclusions are drawn. An important reaction concurrent with polymerization is the formation of a trans nonterminal isomer of octadecene. This certainly affects the yield (the nonterminal isomer not being polymerizable under the same conditions); the effect of the presence during polymerization of isomerized monomer on the physical characteristics of the polymer is less clear, and further work is proceeding.  相似文献   

2.
An attempt has been made to prepare a high molecular weight isotactic polybutene-1 from cis- or trans-butene-2. Polymerization of butene-2 did not occur due to the steric effect of the substituents. In the presence of TiCl3–Al(C2H5)3 catalyst, however, both butene-2 monomers were found to polymerize at a slower rate than butene-1 and to give polymers consisting of the repeating unit of butene-1. From the gas chromatographic determination of the isomer distribution of the butenes recovered after the polymerization, it was found that the butenes isomerized, in the presence of the catalyst system containing TiCl3, to approach the thermodynamic equilibrium mixture of butene-1, cis-butene-2, and trans-butene-2. It was also found that the rates of polymerization of butene-2 for the catalyst systems used were proportional to the isomerization rates. These results show that butene-2 isomerizes first to butene-1 which has less steric hindrance and then polymerizes as butene-1, through ordinary vinyl polymerization by a coordinated anionic mechanism. This type of polymerization was observed in some other linear β-olefins such as n-pentene-2 and n-hexene-2.  相似文献   

3.
Polymerization of 2‐pentene with [ArN?C(An)C(An)·NAr)NiBr2 (Ar?2,6‐iPr2C6H3)] ( 1‐Ni) /M‐MAO catalyst was investigated. A reactivity between trans‐2‐pentene and cis‐2‐pentene on the polymerization was quite different, and trans‐2‐pentene polymerized with 1‐Ni /M‐MAO catalyst to give a high molecular weight polymer. On the other hand, the polymerization of cis‐2‐butene with 1‐Ni /M‐MAO catalyst did not give any polymeric products. In the polymerization of mixture of trans‐ and cis‐2‐pentene with 1‐Ni /M‐MAO catalyst, the Mn of the polymer increased with an increase of the polymer yields. However, the relationship between polymer yield and the Mn of the polymer did not give a strict straight line, and the Mw/Mn also increased with increasing polymer yield. This suggests that side reactions were induced during the polymerization. The structures of the polymer obtained from the polymerization of 2‐ pentene with 1‐Ni /M‐MAO catalyst consists of ? CH2? CH2? CH(CH2CH3)? , ? CH2? CH2? CH2? CH(CH3)? , ? CH2? CH(CH2CH2CH3)? , and methylene sequence ? (CH2)n? (n ≥ 5) units, which is related to the chain walking mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2858–2863, 2008  相似文献   

4.
The polymerization of methyl methacrylate with the VOCL3–ALEt2Br catalyst system in n-hexane has been studied. The first-order dependence of rate of polymerization on catalyst and monomer concentrations, activation energy of 6.67 kcal/mole, and NMR spectra of polymer lend support to a coordinate anionic mechanism of polymerization. It has been shown that the vanadium in V+2 oxidation state is less active than V+3 oxidation state of active complex.  相似文献   

5.
It was found that structurally isomeric polymers were formed by the ring-opening polymerization of β-(2-acetoxy ethyl)-β-propiolactone with (EtAlO)n and Et(ZnO)2ZnEt catalysts; that is, the Al catalyst catalyzed normal polymerization which led to poly-β-ester and the Zn catalyst formed isomerized poly-β-ester as the main product. The polymer structure was determined by nuclear magnetic resonance (NMR), T1-value, thermal decomposition product, and (Tg). The NMR studies for the monomer–catalyst systems indicated that the Al catalyst interacted predominately with the lactone group, whereas the Zn catalyst interacted with the side-chain ester group. These site-selective interactions could be related to the difference in the stereoregulation by the two catalysts during the poly(β-ester)-forming polymerization process.  相似文献   

6.
The kinetics of the di- and trimerization of ethylen in organic solvents under the influence of a homogeneous catalyst containing π-tetramethylcyclobutadiene-nickeldichloride and a prereacted mixture of ethylaluminiumdichloride and tri-n-butylphosphine are reported. The primary reaction product is 1-butene, which is isomerized to 2-butene (cis/trans) during the reaction. The C6-Olefins are formed by the reaction of ethylene with 1-butene and with the 2-butenes. The following primary reaction products are obtained: 3-hexene (cis/trans), 1-hexene, 2-ethyl-1-butene, 3-methyl-1-pentene and 3-methyl-2-pentene (cis/trans). The effect of other phosphines on the reaction was also studied. The relative composition of the reaction product is strongly dependent upon the amount and the LEWIS base strength of the phosphine present. The results are in accordance with a coordinative mechanism on nickel.  相似文献   

7.
Hydrosilylation of olefin groups at poly(ethylene glycol) chain ends catalyzed by Karstedt catalyst often results in undesired side reactions such as olefin isomerization, hydrogenation, and dehydrosilylation. Since unwanted polymers obtained by side reactions deteriorate the quality of end‐functional polymers, maximizing the hydrosilylation efficiency at polymer chain ends becomes crucial. After careful investigation of the factors that govern side reactions under various conditions, it was related that the short lifetime of the unstable Pt catalyst intermediate led to the formation of more side products under the inherently dilute conditions for polymers. Based on these results, two new chelating hydrosilylation reagents, tris(2‐methoxyethoxy)silane (5) and 2,10‐dimethyl‐3,6,9‐trioxa‐2,10‐disilaundecane (6), have been developed. It was demonstrated that the hydrosilylation efficiency at polymer chain ends was significantly increased by employing the internally coordinating hydrosilane 5. In addition, employment of the internally coordinating disilane species 6 in an addition polymerization with 1,5‐hexadiene by hydrosilylation reaction yielded a polymer with high molecular weight (Mn = 9300 g/mol), which was significantly higher than that (Mn = 2600 g/mol) of the corresponding polymer obtained with non‐chelating dihydrosilane, 1,1,3,3‐tetramethyldisiloxane. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 527–536  相似文献   

8.
The synthesis of polypentenamer by an electrochemically generated metathesis polymerization catalyst from methylene chloride solution of WCl6 was investigated. The active species formed by electroreduction of this salt under controlled potential of +900 mV at a platinum cathode with an aluminum anode were found to catalyze the ring-opening metathesis polymerization (ROMP) of cyclopentene, monocyclic olefin of relatively low strain, in high yield (89%) and at short period (32 min) under mild conditions. The effect of reaction parameters, e.g., olefin/catalyst ratio, reaction time, electrolysis time, catalyst aging, on the polymerization yield have been studied. The resulting polymer has been characterized by 1H and 13C NMR, IR and gel permeation chromatography (GPC) techniques. Analysis of the polypentenamer microstructure by means of 13C NMR spectroscopy indicates that the polymer contains a mainly trans stereoconfiguration of the double bonds (σc = 0.31) and a slightly blocky distribution (rtrc > 1) of cis and trans double bond dyads (rtrc = 1.44). However, this electrochemical system is reluctant to facilitate the competing vinyl type addition polymerization reactions.  相似文献   

9.
Thermal degradation of polychloroprene under nitrogen, especially at the initial stages, has been studied by using 1H-NMR, 13C-NMR and FT–IR spectroscopy. A model polymer of low molecular weight (M n = 6300) was prepared to avoid gelation during degradation. None of isomerized 1,2 unit has been found in the original polymer. Allylic rearrangement of 1,2 unit was the first-stage reaction, which was finished within 30 min at 150°C. The extent of HCl loss was proportional to the decrease of isomerized 1,2 unit. It has been suggested that the next-stage reaction is dehydrochlorination of the isomerized 1,2 unit. The presence of terminal vinyl group and the increased amount of olefinic proton were not found in the degraded polymer. The back-biting mechanism involving a six-membered cyclization process is proposed for the dehydrochlorination. The thermal racemization has been also found to take place in the 3,4 unit.  相似文献   

10.
The polymerization of 6-amino-2,4-trans,trans-hexadienoic acid and various of its salts was studied in the solid state. Crystals of the hydrochloride and organic inorganic double halides with cadmium chloride, manganese (II) chloride, and iron(II) chloride were found to polymerize rapidly upon UV or γ irradiation. An erythro-diisotactic polymer is obtained in the form of extended chain crystals. The polymer behaves as an amphoteric polyelectrolyte. The kinetics and the mechanism of the polymerization as well as morphological changes during the solid state reaction are discussed.  相似文献   

11.
The π-allyl nickel halide–organic peroxide system has been found to be active as catalyst for the stereospecific polymerization of butadiene and polymerization of vinyl ether. Benzoyl peroxide is most effective. The catalyst from π-allyl nickel chloride or π-allyl nickel bromide and benzoyl peroxide yields predominantly cis-1,4 polymer with high activity, whereas the catalyst from π-allyl nickel iodide affords predominantly trans-1,4 polymer. The catalyst system can be divided into two parts, a benzene-soluble and a sentially insoluble component. It is concluded that the catalyst activity originates esbenzene-from the insoluble nickel complex which is composed of halogen atom, benzoyloxy group of conjugated structure, allyl group, and nickel. A structure is proposed for the complex.  相似文献   

12.
V. Schurig 《Chromatographia》1980,13(5):263-270
Summary The high selectivity of complexation gas chromatography has been employed for enantiomer resolution and isotope separation. Thus, a chiral olefin, 3-methylcyclopentene, has been resolved analytically on optically active dicarbonyl-rhodium(I)-3-trifluoroacetyl-1R-camphorate in squalane. The deuterated ethylenes C2H4–nDn have been separated on the same rhodium(I)-containing stationary phase. The chiral aliphatic oxiranes epoxypropane andtrans-2,3-epoxybutane have been resolved on optically active nickel(II)-bis-3-trifluoroacetyl-1R-camphorate in squalane.  相似文献   

13.
Polytrifluoromethylacetylene (PTFMA) was synthesized from trifluoromethylacetylene (TFMA) using a PdCl2/DMF catalyst solution or the anionic initiator n-butyl lithium. Although PdCl2 proved to be an effective catalyst for the polymerization of TFMA, long reaction times and poor yields made characterization of the resultant polymer difficult. The use of n-butyl lithium, on the other hand, resulted in high yields of PTFMA in relatively short reaction times. The results of thermal analysis and the effects of n- and p-type doping on the electrical conductivity of the polymer are discussed.  相似文献   

14.
The enantioselective polymerization of bis(2,2,2-trichloroethyl) trans-3,4-epoxyadipate with 1,4-butanediol using the enzyme porcine pancreatic lipase as a catalyst is described. The polymerization was carried out at ambient temperature in anhydrous ethyl ether. End group analysis provided MN = 5,300 daltons, whereas GPC provided Mw = 7,900 daltons for the polymer. The unchanged (+)-enantiomer of the diester was shown to have an enantiomeric purity of > 95% by proton NMR in the presence of the chiral shift reagent Eu(hfc)3. The stereochemical purity of the (?)-polymer was estimated at > 96% by consideration of the amount of the slower reacting enantiomer that could have been incorporated and still attain the observed degree of polymerization (25) when the starting ratio of racemic diester to diol was 2:1. Direct determination of the stereochemical purity of the polymer using Eu(hfc)3 was unsuccessful. Similar studies on polymer having random stereochemical orientations of the epoxide showed that such polymers do not behave as if they are racemic in the presence of the shift reagent. The polymer required for the latter studies was prepared by epoxidation of the product from enzyme catalyzed polymerization of bis(2,2,2-trichloroethyl) trans-3-hexenedioate with 1,4-butanediol.  相似文献   

15.
The low-temperature polymerization of methyl methacrylate initiated with butyllithium–diethylzinc has been studied in toluene and in toluene–tetrahydrofuran and toluene–dioxane mixtures in various proportions. The polymerization process is typically anionic; it is characterized by a very rapid initiation reaction, and the absence of termination and chain transfer reactions, the molecular weight increasing proportionally with the degree of conversion. With toluene as a solvent, the polymer chains are associated, as is shown by viscometric measurements; moreover the polymers produced are highly polydisperse (Mv/Mn = 5.4). The kinetics are very complicated and vary with the range of the catalyst and monomer concentrations. In pure toluene in the presence of the organometallic complex, butyllithium–diethylzinc, the monomer addition is more stereospecific than when butyllithium alone is used as catalyst. By adding tetrahydrofuran to the reaction mixture, the polymer chain association disappears; concomitantly the stereochemical structure of the polymer changes from an isotactic to a mainly syndiotactic configuration. In toluene–tetrahydrofuran mixtures containing from 1 to 10 vol.-% tetrahydrofuran, the kinetics of polymerization can easily be interpreted by assuming the presence of two propagating reactive species which are in equilibrium with each other: the ion pair and the THF-solvated ion pair. The energy of activation of propagation for the free ion pair is equal to 7.5 kcal./mole; for the solvated ion pair a value of 5.5 kcal./mole was found, including the solvation enthalpy of the organometal with tetrahydrofuran. The existence of any relation between the reactivity of the propagating species and the tactic incorporation of the monomeric units has been discussed. The polymerization in mixtures of toluene–dioxane is intermediate between that in pure toluene and that in toluene–HF mixtures; the reaction mechanism however cannot be interpreted with the usual kinetic scheme. The experimental data concerning the rate dependence on catalyst and monomer concentrations are briefly summarized.  相似文献   

16.
1-Vinylcyclohexene (VCH), which has one of the double bonds in the ring and the other outside the ring, was synthesized and polymerized by cationic catalysts. The reactivity of VCH was very large in the polymerizations catalyzed by boron trifluoride etherate (BF3OEt2) and stannic chloride–trichloroacetic acid complex. Similar to other cyclic dienes, the polymerization of VCH was a nonstationary reaction having a very fast initiation step. The polymerization proceeded by either a 1,2- or a 1,4-propagation mode in which vinyl group was always involved. Particularly when BF3OEt2 was used as a catalyst, an intramolecular proton or an intramolecular hydride ion transfer reaction took place, resulting in the formation of methyl groups in the polymer. The degree of polymerization of polymer formed was about 10. This indicates the preponderance of monomer transfer reaction. To investigate the reason for the high reactivity of cyclic dienes, cationic copolymerizations of VCH and 3-methyl-cis/trans-1,3-pentadiene (cis/trans-MPD) was carried out. The relative reactivity of monomers decreased in the order VCH > trans-MPD > cis-MPD. On the other hand, the resonance stabilization of monomers decreased in the order VCH > trans-MPD > cis-MPD. Therefore, it could be considered that the monomer reactivity is mainly determined by the stability of carbonium ion intermediate. The relative stability of carbonium ion must be VCH > trans-MPD > cis-MPD. Thus the influence of the conformation of ion on its stability was clearly demonstrated.  相似文献   

17.
RuCl2(PPH3)3 has been attached to a phosphinated polymer support (phosphinated polystyrene crosslinked with 2% divinylbenzene) and the reagent converted to the polymer supported analogue of RuClH(PPH3)3 in the presence of base. The polymer supported catalyst efficiently hydrogenates terminal olefins under ambient conditions. Hydrogenation of 1-hexene has revealed that the reaction rate is proportional to [Ru], [H2] and [olefin]/(1 + [olefin]). The polymer support environment allows for selectivity in olefin hydrogenation and under suitable reaction conditions short chain terminal olefins are hydrogenated more rapidly than long chain terminal olefins. The extent of metal loading on the polymer and the reaction solvent composition also influence the reaction selectivity and these effects are discussed.  相似文献   

18.
The polymerization mechanism of trans,trans-2,5-distyrylpyrazine (DSP) has been investigated and some crystal changes along with the polymerization process have been observed through polarizing microscope and x-ray diffraction pattern. Information has been obtained on the active species, polymerization reaction type, and other factors such as light intensity, reaction temperature, or crystalline state. The polymerization of DSP occurs only in the solid state by photoirradiation. Reduced viscosity increases gradually with the increase of conversion and increases sharply above 80% conversion. Polymerization rate increases with the increase of light intensity and temperature. On the other hand, reduced viscosity decreases with the increase of temperature but does not depend on light intensity within the range investigated. The polymer obtained at low conversion as well as at high conversion has high crystallinity, and the direction of polymer axes is simply related to that of monomer crystal. It was concluded that the four-center type polymerization of DSP proceeds topochemically by a photochemically induced stepwise mechanism.  相似文献   

19.
A detailed kinetic model of Fischer–Tropsch synthesis (FTS) product formation, including secondary methane formation and 1‐olefin hydrogenation, has been developed. Methane formation in FTS over the cobalt‐based catalyst is well known to be higher‐than‐expected compared to other n‐paraffin products under typical reaction conditions. A novel model proposes secondary methane formation on a different type of active site, which is not active in forming C2+ products, to explain this anomalous methane behavior. In addition, a model of secondary 1‐olefin hydrogenation has also been developed. Secondary 1‐olefin hydrogenation is related to secondary methane formation with both reactions happening on the same type of active sites. The model parameters were estimated from experimental data obtained with Co/Re/γ‐Al2O3 catalyst in a slurry‐phase stirred tank reactor over a range of conditions (T = 478, 493, and 503 K, P = 1.5 and 2.5 MPa, H2/CO feed ratio = 1.4 and 2.1, and X CO = 16–62%). The proposed model including secondary methane formation and 1‐olefin hydrogenation is shown to provide an improved quantitative and qualitative prediction of experimentally observed behavior compared to the detailed model with only primary reactions.  相似文献   

20.
Ethylene and 1‐octene copolymerizations were carried out with an in situ supported rac‐[dimethylsilylbis(methylbenzoindenyl)] zirconium dichloride catalyst. In a previous study, it was found that some in situ supported metallocenes produced polyethylene/α‐olefin copolymers with broad and bimodal short chain branching distributions and narrow molecular weight distributions. The ability to produce polyolefins with multimodal microstructural distributions in a single metallocene and a single reactor is attractive for producing polymers with balanced properties with simpler reactor technology. In this study, a factorial experimental design was carried out to examine the effects of the polymerization temperature and ethylene pressure, the presence of hydrogen and an alkylaluminum activator, and the level of the comonomer in the feed on the catalyst activity, short chain branching distribution, and molecular weight distribution of the polymer. The temperature had the most remarkable effect on the polymer microstructure. At high 1‐octene levels, the short chain branching distribution of the copolymer broadened significantly with decreasing temperature. Several factor interactions, including the hydrogen and alkylaluminum concentrations, were also observed, demonstrating the sensitivity of the catalyst to the polymerization conditions. For this catalyst system, the responses to the polymerization conditions are not easily predicted from typical polymerization mechanisms, and several two‐factor interactions seem to play an important role. Given the multiple‐site nature of the catalyst, it has been shown that predicting the polymerization activity and the resulting microstructure of the polymer is a challenging task. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4426–4451, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号