首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Readily available N-acyl-2-pyrrolines are converted into functionalized -alkoxy-β-iodopyrrolidines by N-iodosuccinimide promoted alcohol addition to the enamine group. These compounds are readily cyclized using a sodium cyanoborohydride-catalytic tributylstannane system affording functionalized pyrrolidines in good yields. The cyclized products undergo N-acyliminium ion reactions, such as BF3·OEt2 mediated addition of allyltrimethylsilane.  相似文献   

2.
The Reformatsky reagent tert-butoxycarbonylmethylzinc bromide adds in high yields to N-sulfonylimines, e.g. 1a–1d, derived by condensation of benzaldehyde dimethyl acetal with methanesulfonamide, toluene-4-sulfonamide, 4-(methoxycarbonyl)benzenesulfonamide and sulfamide: the products are protected β-amino acids 2a–2d. N-Deprotection occurs reductively (Na-naphthalene; low yields) for 2b and 2c or hydrolytically (refluxing aq. pyridine; 76% yield of amino acid 3a after acid hydrolysis of the t-butyl ester) for the sulfamide derivatives 2d. Anthracene-9-sulfonamide (6) is readily available by sulfonation and chlorination of anthracene, and condenses with aldehydes [RCHO; R = Ph, 4-FC6H4, 4-MeOC6H4, 4-NCC6H4, 2-furyl, (E)-styryl], e.g. in the presence of TiCl4/Et3N, to yield imines 7a–7f, which after addition of tert-butoxycarbonylmethylzinc bromide give protected amino acids 8a–8f; however, 8f cyclizes to the sultam 9 via a spontaneous intramolecular Diels-Alder reaction. Reductive cleavage of the N-anthracene-9-sulfonyl group is much easier than for traditional N-sulfonyl protecting groups, as demonstrated by the deprotection of 8a and 8c using aluminium amalgam.  相似文献   

3.
Structures of the following compounds have been obtained: N-(2-pyridyl)-N′-2-thiomethoxyphenylthiourea, PyTu2SMe, monoclinic, P21/c, a=11.905(3), b=4.7660(8), c=23,532(6) Å, β=95.993(8)°, V=1327.9(5) Å3 and Z=4; N-2-(3-picolyl)-N′-2-thiomethoxyphenyl-thiourea, 3PicTu2SeMe, monoclinic, C2/c, a=22.870(5), b=7.564(1), c=16.941(4) Å, β=98.300(6)°, V=2899.9(9) Å3 and Z=8; N-2-(4-picolyl)-N′-2-thiomethoxyphenylthiourea, 4PicTu2SMe, monoclinic P21/a, a=9.44(5), b=18.18(7), c=8.376(12) Å, β=91.62(5)°, V=1437(1) Å3 and Z=4; N-2-(5-picolyl)-N′-2-thiomethoxyphenylthiourea, 5PicTu2SMe, monoclinic, C2/c, a=21.807(2), b=7.5940(9), c=17.500(2) Å, β=93.267(6)°, V=2893.3(5) Å3 and Z=8; N-2-(6-picolyl)-N′-2-thiomethoxyphenylthiourea, 6PicTu2SMe, monoclinic, P21/c, a=8.499(4), b=7.819(2), c=22.291(8) Å, β=90.73(3)°, V=1481.2(9) Å3 and Z=4 and N-2-(4,6-lutidyl)-N′-2-thiomethoxyphenyl-thiourea, 4,6LutTu2SMe, monoclinic, P21/c, a=11.621(1), b=9.324(1), c=14.604(1) Å, β=96.378(4)°, V=1572.4(2) Å3 and Z=4. Comparisons with other N-2-pyridyl-N′-arylthioureas having substituents in the 2-position of the aryl ring are included.  相似文献   

4.
(N,N-Dimethyldithiocarbamato)(n-butyl)diphenyltin(IV), n-BuPh2SnS2NMe2, crystallizes in the monoclinic space group P21/n with a 9.772(5), b 9.895(4), c 21.418(9) Å, β 95.81(3)0, V 2060 Å3 Z = 4, μ 14.4 cm−1 The structure was determined by the heavy-atom technique from 3103 independent reflections measured at room temperature on an Enraf-Nonius four-circle CAD-4 diffractometer using monochromatized Mo-K radiation and refined to a final R value of 5.8%. The tin atom is essentially four-coordinated with a weak fifth tin-sulphur bond (Sn---S(2) 3.079(1) Å) considerably longer than the other (Sn---S(1) 2.466(1) Å). A comparison with the complex n-BuPhSn(C1)S2CNEt2 (Sn---S(1) 2.454(1) Å; Sn---S(2) 2.764(1) Å) suggests that enhanced steric factors are responsible for the preferential monodentate behaviour of the dithiocarbamate ligand in the title complex.  相似文献   

5.
The preparation, spectroscopic characterization and magnetic study of N,N′-bis(substituted-phenyl)oxamidate-bridged nickel(II) dinuclear complexes of formula {[Ni(N3-mc)]2(μ-CONC6H4-X)}(PF6)2 (N3-mc = 2,4,4-trimethyl-1,5,9-triazacyclo-dodec-1-ene (Me3-N3-mc) or 2,4,4,9-tetramethyl-1,5,9-triazacyclododec-1-ene (Me4-N3-mc), X = 2-Cl, 4-Cl, 2-OCH3, 4-OCH3) are reported. These paramagnetic nickel(II) complexes have been characterized by both one- and two-dimensional (COSY) 1H NMR techniques. The COSY spectrum of 5 has allowed to achieve the assignment of the phenyl protons of the N,N′-diphenyloxamidate. The crystal structures of [Ni(Me3-N3-mc)(μ-CONC6H4-4-Cl)]2(PF6)2 (6), [Ni(Me3-N3-mc)(μ-CONC6H4-4-OMe)]2(PF6)2 (8) and [Ni(Me4-N3-mc)(μ-CONC6H4-2-Cl)]2(PF6)2 (9) have been determined and their magnetic properties have been studied. The value of magnetic coupling between the two nickel(II) ions across the oxamidate bridge [J = − 37.6 (6), −39.9 (8) and −39.7 cm−1 (9)] is sensitive to the distortion of the coordination sphere of the metal ions and the topology of the molecular bridge.  相似文献   

6.
The complexes [WI2(CO)L22-RC2R)] (L = PEt3 or PMe2Ph; R = Me or Ph) react with an equimolar quantity of Ag[BF4] in acetonitrile at room temperature to give good yields of the new purple cationic alkyne complexes [WI(CO)(NCMe)L22-RC2R)][BF4]. 31P NMR spectroscopy indicates that the phosphines are trans to each other in these compounds. 13C NMR spectroscopy suggests that the alkyne ligands are donating four electrons to the tungsten in these complexes.  相似文献   

7.
N-2-(4-picolyl)-N′-2-chlorophenylthiourea, 4PicTu2Cl, monoclinic, P21/c, a=10.068(5), b=11.715(2), β=96.88(4)°, and Z=4; N-2-(6-picolyl)-N′-2-chlorophenylthiourea, 6PicTu2Cl, triclinic, P-1, a=7.4250(8), b=7.5690(16), c=12.664(3) Å, =105.706(17), β=103.181(13), γ=90.063(13)°, V=665.6(2) Å3 and Z=2 and N-2-(6-picolyl)-N′-2-bromophenylthiourea, 6PicTu2Br, triclinic, P-1, a=7.512(4), b=7.535(6), c=12.575(4) Å, a=103.14(3), β=105.67(3), γ=90.28(4)°, V=665.7(2) Å3 and Z=2. The intramolecular hydrogen bonding between N′H and the pyridine nitrogen and intermolecular hydrogen bonding involving the thione sulfur and the NH hydrogen, as well as the planarity of the molecules, are affected by the position of the methyl substituent on the pyridine ring. The enthalpies of fusion and melting points of these thioureas are also affected. 1H NMR studies in CDCl3 show the NH′ hydrogen resonance considerably downfield from other resonances in their spectra.  相似文献   

8.
Regioselective addition of chalcogenol to an ν3-propargyl complex Pt(PPh3)23-C3H3)](BF4) (2) via the formation of the C---O, C---S, or C---Se bond generates new cationic chalcogenoxyallyl species {Pt(PPh3)23CH2C(ER)CH2]}(BF4) (E = O, R = Me 4(a), Et (4b, iPr (4c), 1Bu (4d), Ph (4e); E=S, E=Et (5b), tBu (5d, Ph (5e); E=Se, R=Ph (6e )) respectively in good yields. Thiol and selenol react with complex 2 much faster than alcohol; and 2 reacts with p-(HO)C6H4(SH) to exclusively yield the thioxyallyl product {Pt(PPh3)23-CH2C(SC6H4OH)CH2]}(BF4) (5f). Among the alcoh and phenol, thereactivity follows the order MeOH > EtOH >, iPrOH >, tBuOH > PhOH. A mechanism comprising a preceding coordination step is postulated. The X-ray structures of 4b, 4e, 5b, 5e and 6e are provided.  相似文献   

9.
The Schiff base compound, N-N′-bis(4-methoxybenzylidene)ethylenediamine (C18H20N2O2) has been synthesized and its crystal structure has been investigated by X-ray analysis and PM3 method. The compound crystallizes in monoclinic space group P21/n with a=10.190(1), b=7.954(1), c=10.636(1) Å, β=111.68(1)°, V=801.1(1) Å3, Z=2 and Dcal=1.229 Mgm−3. The title structure was solved by direct methods and refined to R=0.056 for 2414 reflections [I>3.0σ(I)] by full-matrix anisotropic least-squares methods. The energy profile of the compound was calculated by PM3 method as a function of θ[N1′–C9′–C9–N1]. The most stable molecular structure of the title compound is the anti conformation, which is different in energy by 5.0 and 1.0 kcal mol−1 from the eclipsed conformation I and gauche conformations, (III and V), respectively.  相似文献   

10.
N-(β-Hydroxy)amides can be cyclised by reaction with diisopropylcarbodiimide (DIC) to give the corresponding 2-oxazolines in high yields. The reaction requires only very mild Lewis-acid catalysis (5 mol % Cu(OTf)2) and can be accomplished with simple heating, or in very short reaction times under microwave irradiation.  相似文献   

11.
Reaction of N-vinylindazolium tetrafluoroborates with aqueous potassium carbonate or sodium borohydride affords 2,3-dihydroquinazolines which evolve to 1,2,3,4-tetrahydroquinazolines by intra or intermolecular nucleophilic attack. The X-ray structure of one tetrahydroquinazoline, the tricyclic compound 17a, was determined (C14H16N2O5, P21/n, a=6.001(4)Å, b=13.601(8)Å, c=17.452(6)Å, β=94.93(3)°, V=1419(1)Å3, Z=4, R=0.078 for 1541 observed reflexions). Only open-chain compounds are obtained when these salts react with methanol. 2-Vinylindazolium and 3-vinylbenzotriazolium tetrafluoroborates react with aqueous potassium carbonate and with sodium borohydride yielding the corresponding neutral benzazoles by cleavage of the azole-vinyl bond. They add methanol to the exocyclic double bond and, in the case of indazole derivative, an expansion to a 1,2-dihydroquinazoline is observed in basic medium.A general mechanism is proposed for the reaction of vinylpyrazolium and indazolium salts with nucleophiles.  相似文献   

12.
The first carbonyl molybdenum-(O) and -(II) complexes with phenylbis(2-pyridyl)phosphine (PPhpy2) have been synthesized. PPhpy2 reacts with [Mo(CO)5(NCMe)] to give [Mo(CO)5(PPhpy2-P)]. With [Mo(CO)4(NBD)] (NBD = norbornadiene) it gives [Mo(CO)4(PPhpy2-P)2] when a 2 : 1 ratio is used, or [MO(CO)4(py2PhP---N,N′)] for a 1 : 1 ratio. Decarbonylation of any of these pyridylphosphine complexes leads to an oligomer of formula {MO(CO)3(μ-PPhpy2)}n, which is also obtained after heating [MO(CO)6] in solution with an equimolar amount of PPhpy2. The oligomer undergoes oxidative addition by iodine or allylbromide to give [MoI2(CO)3(py2PhP---N,N′)], or [MoBr(η3-CH2CHCH2)(CO)2(py2PhP---N,N′)], respectively. These complexes are also obtained by addition of equimolar amounts of PPhpy2 to solutions of [MoI2(CO)3(NCMe)2] and MoBr(η3-CH2CH CH2)(CO)2(NCMe)2, respectively. The ligand tends to act as a P-donor towards molybdenum(O) substrates, and as a chelating N,N′-donor in molybdenum (II) complexes.  相似文献   

13.
The diorganomercurial bis[2-(N,N-dimethylaminomethyl)ferrocenyl]mercury(II), (FcN)2Hg (3), can be obtained by the symmetrisation of the heteroleptic (FcN)HgCl (2) with Na2S2O3 or in the transmetallation reaction of 2 with (FcN)Li. By crystallisation only the crystals of rac-(FcN)2Hg were obtained. X-ray diffraction analysis revealed linear coordinated mercury atom with two η1-bonded FcN ligands. Additionally, weak chelate interactions exist between mercury and nitrogen atoms of the ---CH2NMe2 side chains. According to the 1H-NMR findings, these interactions are not preserved in solution. Diorganomercurial 3 appears in solution as a mixture of two diastereomers with rac/meso-(FcN)2Hg ratio of 1:1. This diastereomeric ratio in solution remains constant within a wide temperature range and in different solvents. The NMR spectroscopic data of the heteroleptic organomercurials [(FcN)HgCl]2·H2O (1) and (FcN)HgCl (2) indicate the chelate-free structure of this compounds in solution within the studied temperature interval (−80 to 90 °C).  相似文献   

14.
Reaction of potassium 3{5}-(3′,4′-dimethoxyphenyl)pyrazolide with 2-bromopyridine in diglyme at 130°C for 3 days followed by an aqueous quench, affords 1-{pyrid-2-yl}-3-{3′,4′-dimethoxyphenyl}pyrazole (L2) in 69% yield after recrystallization from hot hexanes. Complexation of [Cu(NCMe)4]BF4 by 2 molar equivalents of 1-{pyrid-2-yl}-3-{2′,5′-dimethoxyphenyl}pyrazole (L1) or L2 in MeCN at room temperature, followed by concentration and crystallisation with Et2O, gives [Cu(L)2]BF4 L = L1, L2) in good yields. Treatment of AgBF4 with L1 or L2 in MeNO2 similarly gives [Ag(L)2]BF4 L = L1, L2); reaction of AfBF4 with L2 in MeCN gives a product of stoichiometry [Ag(L2)(NCMe)]BF4. The 1H NMR spectra of the [M(L)2]BF4 complexes show peaks arising from a single coordinated environment. The single crystal X-ray structure of [Cu(L1)2]BF4 shows a tetrahedral complex cation with Cu---N = 2.011(8), 2.036(8), 2.039(8), 2.110(8) Å. The CuI centre is close to tetrahedral, the dihedral angle between the least-squares planes formed by the Cu atom and the N donor atoms of the two ligands being 88.3(3)°. Complexation of hydrated Cu(BF4)2 by L2 in MeCN at room temperature yields [Cu(L2)2](BF4)2. The cyclic voltammograms of the three AgI complexes in MeCN/0.1 M Bu4n NPF6 are suggestive of extensive ligand dissociation in this solvent.  相似文献   

15.
The chiral bis-imine (1R,2R)-C6H10-[E---N=CH---C6H3---3,4-(OMe)2]2 1 (LH) reacts with [Pd(OAc)2] (1:1 molar ratio; OAc=acetate) giving the orthometallated [Pd(OAc)(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)-C6H10---N=CH---C6H3-3′,4′-(OMe)2-κ-C,N,N)] 2 (abbreviated as [Pd(OAc)(L-κ-C,N,N)]), through C---H bond activation on only one of the aryl rings and N,N-coordination of the two iminic N atoms. 2 reacts with an excess of LiCl to give [Pd(Cl)(L-κ-C,N,N)] 3. The reaction of 3 with AgClO4 and neutral or anionic ligands L′ (1:1:1 molar ratio) affords [Pd(L-κ-C,N,N)(L′)](ClO4) (L′=PPh3 4a, NCMe 5, pyridine 6, p-nitroaniline 7) or [Pd(I)(L-κ-C,N,N)] 8. Complex 4a reacts with wet CDCl3 giving [Pd(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)---C6H10---NH2-κ-C,N,N)(PPh3)](ClO4) 4b as a result of the hydrolysis of the C=N bond not involved in the orthometallated ring. The molecular structure of 4b·CH2Cl2 has been determined by X-ray diffraction methods. Cleavage of the Pd---N bond trans to the Caryl atom can be accomplished by coordination of strongly chelating ligands, such as acetylacetonate (acac) or bis(diphenylphosphino)ethane (dppe), forming [Pd(acac-O,O′)(L-κ-C,N)] 9 and [Pd(L-κ-C,N)(dppe-P,P′)](ClO4) 12, while classical N,N′-chelating ligands such as 1,10-phenantroline (phen) or 2,2′-bipyridyl (bipy) behave as monodentate N-donor ligands yielding [Pd(L-κ-C,N,N)(κ1-N-phen)](ClO4) 10 and [Pd(L-κ-C,N,N)(κ1-N-bipy)](ClO4) 11. Treatment of 1 with PtCl2(DMSO)2 (1:1 molar ratio) in refluxing 2-methoxyethanol gives Cl2Pt[(NH2)2C6H10---N,N′] 13a and [Pt(Cl)(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)---C6H10---NH2-κ-C,N,N)] 13b, while [Pt(Cl)(L-κ-C,N,N)] 14 can be obtained by reaction of [Pt(μ-Cl)(η3-2-Me---C3H4)]2 with 1 in refluxing CHCl3. Complexes 2 and 3 catalyzed the arylation of methyl acrylate giving good yields of the corresponding methyl cinnamates and TON up to 847 000. Complex 3 also catalyzes the hydroarylation of 2-norbornene, but with lower yields and without enantioselectivity.  相似文献   

16.
The crystal structure of N-(2-hydroxy-5-chlorophenyl) salicylaldimine (C13H10NO2Cl) was determined by X-ray analysis. It crystallizes orthorhombic space group P212121 with a=12.967(2) Å, b=14.438(3) Å, c=6.231(3) Å, V=1166.5(6) Å3, Z=4, Dc=1.41 g cm−3 and μ(MoK)=0.315 mm−1. The title compound is thermochromic and the molecule is nearly planar. Both tautomeric forms (keto and enol forms in 68(3) and 32(3)%, respectively) are present in the solid state. The molecules contain strong intramolecular hydrogen bonds, N1–H1O1/O2 (2.515(1) and 2.581(2) Å) for the keto form and O1–H01N1 for the enol one. There is also strong intermolecular O2–HO1 hydrogen bonding (2.599(2) Å) between neighbouring molecules. Minimum energy conformations AM1 were calculated as a function of the three torsion angles, θ1(N1–C7–C6–C5), θ2(C8–N1–C7–C6) and θ3(C9–C8–N1–C7), varied every 10°. Although the molecule is nearly planar, the AM1 optimized geometry of the title compound is not planar. The non-planar conformation of the title compound corresponding to the optimized X-ray structure is the most stable conformation in all calculations.  相似文献   

17.
The synthesis and coordination of 2-diphenylphosphinopicolinamide (dpppa 1) is reported. Coordination complexes with Pd, Pt, Ru, Rh, Ir and Au are described. The ligand behaves as a monodentate P donor in complexes such as [PtCl2(dpppa-P2)], [PdCl(allyl)(dpppa-P)], [RuCl2(p-Cymene)(dpppa-P)], cis-[PtCl2(dpppa-P)(PR3)] and [AuCl(dpppa-P)]. Bidentate P, O coordination was accomplished by reaction of BuLi with [RuCl2(p-Cymene)(dpppa-P)], to give [RuCl(p-Cymene)(dpppa-P,O). P,N donor behaviour was achieved by reaction of a monodentate complex with a halide abstractor [AgBF4] generating [RuCl(p-Cymene)(dpppa-P,N)][ClO4] and[RhCl(η5-C5Me5)(dpppa-P,N)][BF4]. The X-ray structures of dpppa, dpppaO, dpppaS, four monodentate complexes and [RuCl(p-Cymene)(dpppa-P,O) are reported. All of the structures contain intramolecular N–HN hydrogen bonding.  相似文献   

18.
Norbornene polymerizations with nickel complexes bearing [N,N] six-membered chelate ring activated with methylaluminoxane were investigated. The influence of ligand structure such as β-diimine, β-diketiminate, fluorinated β-diketiminate, and anilido-imine ligand on catalytic activities for norbornene polymerization was evaluated in detail. Ligands led to different electrophilicity of the nickel metal center, and a relatively positive nickel metal center would result in high catalytic activities for norbornene polymerization. The influences of polymerization temperature and Al/Ni ratio on norbornene polymerization with nickel catalysts bearing β-diimine, β-diketiminate, and fluorinated β-diketiminate ligands were also examined. All of the obtained polymers catalyzed by these nickel catalysts bearing [N,N] ligand are vinylic addition polynorbornenes with different molecular weights.  相似文献   

19.
The theoretical studies of the gas-phase elimination of 2-substituted ethyl N,N-dimethylcarbamates (Z=CH2Cl, C≡CH, C≡N) were performed using ab initio MP2/6-31G and MP2/6-31G(d) levels of theory. The gas phase elimination reaction of these carbamates yields N,N-dimethylcarbamic acid and the corresponding substituted olefin in a rate-determining step. The intermediate N,N-dimethylcarbamic acid is unstable and rapidly decomposes through a four-membered cyclic transition state to dimethylamine and CO2 gas. The results of these calculations suggest a mechanism to be concerted, asynchronous, and a six-membered cyclic transition state structure. Plotting the relative theoretical rate coefficients against Taft's σ* values gave an approximate straight line (ρ*=0.4057, r=0.9894 at 360 °C). The correlation between experimental log krel vs. theoretical log krel. for these 2-substituted ethyl N,N-dimethylcarbamates gave an approximate straight line (r=0.9715 at 360 °C), suggesting the same type of mechanism.  相似文献   

20.
The infrared spectra of some aldehyde-BF3 complexes were measured from 2.5 μ to 19 μ. The intensity and force constant of the v(CH)ald range is dependent on the lone-pair electrons of the neighbouring oxygen atom. In the BF3 complexes the intensity of v(CH)ald is decreased and shifted 150 cm−1 towards higher frequencies, while the band becomes simple. The addition of BF3 is verified by checking the v(C=O) band, which is shifted 70 cm−1 towards lower frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号