首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new benzodithiophene(BDT)-alt-fluorobenzotriazole(FBTA) D-A copolymer J40 was designed and synthesized by introducing 2-octyldodecyloxy side chains on its BDT units, for expanding the family of the BDT- alt-FBTA-based copolymers and investigating the side chain effect on the photovoltaic performance of the polymer in non-fullerene polymer solar cells(PSCs).J40 exhibits complementary absorption spectra and matched electronic energy levels with the n-type organic semiconductor(n-OS)(3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-sindaceno[1,2-b:5,6-b′]dithiophene)(ITIC) acceptor, and was used as polymer donor in the non-fullerene PSCs with ITIC as acceptor. The power conversion efficiency(PCE) of the PSCs based on J40:ITIC(1:1, w/w) with thermal annealing at 120 °C for 10 min reached 6.48% with a higher open-circuit voltage(Voc) of 0.89 V. The high Voc of the PSCs is benefitted from the lower-lying highest occupied molecular orbital(HOMO) energy level of J40. Although the photovoltaic performance of the polymer J40 with alkoxy side chain is lower than that of J60 and J61 with alkylthio-thienyl conjugated side chains, the PCE of6.48% for the J40-based device is still a relatively higher photovoltaic efficiency in the non-fullerene PSCs reported so far. The results indicate that the family of the BDT-alt-FBTA-based D-A copolymers are high performance polymer donor materials for non-fullerene PSCs and the side chain engineering plays an important role in the design of high performance polymer donors in the non-fullerene PSCs.  相似文献   

2.
Two new regioregular polymers P1 and P2 with structure of type D–A1–D–A2 have been prepared. The polymers exhibit strong light absorption in the range 300–1100 nm and have band gaps of 1.09 and 1.11 eV, respectively. The HOMO and LUMO energies for P1 and P2 are–5.08/–3.81 and–5.16/–3.85 eV, respectively. Polymer solar cells (PSC) based on P1: PC71BM (1: 2, v/v) and P2: PC71BM (1: 1, v/v) have open-circuit voltage V oc, short circuit current J sc, and efficiency of 0.79 and 0.84 V, 8.32 and 9.54 mA/cm2, 3.5 and 4.7%, respectively. The PSC based on P2 exhibits higher characteristics due to the presence of fluorine atoms in the structure: their strong electron-withdrawing properties decrease the HOMO level of polymer P2 as compared with that of P1, which increases the V oc value. Moreover, the formation of additional S???F contacts leads to the growth of ordering and crystallinity of polymer P2 as compared with P1, which favors an increase in the values of J sc and filling factor.  相似文献   

3.
The medium band gap donor-acceptor(D-A) copolymer J61 based on bi(alkylthio-thienyl)benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit and thiophene as π-bridge has demonstrated excellent photovoltaic performance as donor material in nonfullerene polymer solar cells(PSCs) with narrow bandgap n-type organic semiconductor ITIC as acceptor.For studying the effect of π-bridges on the photovoltaic performance of the D-A copolymers,here we synthesized a new D-A copolymer J61-F based on the same donor and acceptor units as J61 but with furan π-bridges instead of thiophene.J61-F possesses a deeper the highest occupied molecular orbital(HOMO) level at-5.45 eV in comparison with that(-5.32 eV) of J61.The non-fullerene PSCs based on J61-F:ITIC exhibited a maximum power conversion efficiency(PCE) of 8.24%with a higher open-circuit voltage(V_(oc)) of 0.95 V,which is benefitted from the lower-lying HOMO energy level of J61-F donor material.The results indicate that main chain engineering by changing π-bridges is another effective way to tune the electronic energy levels of the conjugated D-A copolymers for the application as donor materials in non-fullerene PSCs.  相似文献   

4.
Two novel donor–acceptor (D–A) copolymers P1 and P2 with the thiazoloquinoxaline repeating acceptor moiety and different donor moieties of benzo[1,2-b:4,5-b']dithiophene and isomeric benzo[2,1-b:3,4-b']dithiophene have been prepared. The polymers show light absorption at 300–1200 nm and a band gap width of 0.98 and 1.14 eV, respectively. The energies of the HOMO (–5.42 and–5.29 eV) and LUMO (–3.90 and–3.83 eV) levels of polymers P1 and P2 have been determined. The absorption maximum for polymer P1 in the long-wavelength region is red-shifted by 161 nm, which is caused by stronger charge transfer in P1 as compared with P2. This fact indicates that the benzo[1,2-b:4,5-b']dithiophene structural moiety has a higher electron-donating ability than the benzo[2,1-b:3,4-b']dithiophene moiety. The red shift of the absorption spectrum of polymer P1 in comparison with that of P2 indicates that interchain π–π stacking interactions are more efficient in P1 than in P2.  相似文献   

5.
Two new fused quinoxaline-containing monomers—2,3-bis(9-(2-decyltetradecyl)-9H-carbazol-3-yl)dithieno[3,2-f:2'3'-h]quinoxaline (М1) and 2,5-di(nonadecan-3-yl)bis[1,3]thiazolo[4,5-a:5',4'-c]bisthieno[3,2-h:2',3'-j]phenazine (М2)—have been synthesized in high yields of 88 and 83% as promising building blocks of D-A polymers for photovoltaic applications. The optical bandgaps, found from the absorption edge, are 2.79 and 2.88 eV, respectively. The HOMO/LUMO energies of М1 and М2 are–5.83/–2.96 and–5.83/–2.98 eV, respectively. Both monomers have low-lying HOMO levels, which is favorable for a high open-circuit voltage and a high stability in air in the development of PSCs. The E g ec values of monomers М1 and М2 are 2.87 and 2.85 eV and are consistent well with the optical bandgap (2.79 and 2.88 eV, respectively).  相似文献   

6.
耿延候 《高分子科学》2017,35(4):480-489
Three acceptor-donor-acceptor(A-D-A) conjugated oligomers, i.e., O1, O2 and O3, have been synthesized using diketopyrrolopyrrole(DPP) as an electron-acceptor unit, and naphtho[1,2-b:5,6-b']dithiophene(NDT), anthra[1,2-b:5,6-b']dithiophene(ADT) or dithieno[3,2-b:3',2'-b']naphtho[1,2-b:5,6-b']dithiophene(DTNDT) as electron-donor unit. These oligomers exhibit identical highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) energy levels, which were ca.-5.1 and-3.3 eV, respectively. Upon thermal annealing, all three oligomers formed thin films with ordered microstructures, and their organic thin film transistors(OTFTs) exhibited p-type transport behavior. The mobility was increased with an extension of the size of D-units. O3 showed the best OTFT performance with the mobility of up to 0.20 cm~2·V~(-1)·s~(-1). The film quality of O3 was improved by adding 1 wt% poly(methylmethacrylate)(PMMA). In consequence, the mobility of the O3-based devices was further enhanced to 0.30 cm~2·V~(-1)·s~(-1).  相似文献   

7.
A series of random terpolymers P2-P5 were designed and synthesized by randomly embedding 5 mol%, 10 mol%, 15 mol%and 25 mol% feed ratios of low cost 2,2-bithiophene as the third monomer to the famous donor-acceptor(D-A) type copolymer PTB7-Th(P1). All polymers showed similar molecular weight with number-average molecular weight(Mn) and weight-average molecular weight(Mw) in the range of(59-74) and(93-114) kg·mol~(-1), respectively, to ensure a fair comparison on the structure-property relationships.Compared with the control copolymer PTB7-Th, the random terpolymers exhibited enhanced absorption intensity in a wide range from400 nm to 650 nm in both solution and film as well as in polymer/PC71 BM blends. From grazing incident wide-angle X-ray diffraction(GIWAXS), compared with the regularly alternated copolymer PTB7-Th, the random terpolymers demonstrated mild structural disorder with reduced(100) lamellar stacking and slightly weakened(010) π-π stacking for the polymers as well as slightly reduced PC71 BM aggregation in polymer/PC71 BM blends. However, the measured hole mobility for terpolymers((1.20-3.73) × 104-cm2·V-1·s~(-1)) was evaluated to be comparable or even higher than 1.35 × 10~(-4) cm~2·V~(-1)·s-1 of the alternative copolymer. Enhanced average power conversion efficiency(PCE) from 7.35% to 8.11% and 7.79% to 8.37% was observed in both conventional and inverted device architectures from copolymer P1 to terpolymers P4, while further increasing the 2,2-bithiophene feed ratio decreased the PCE.  相似文献   

8.
The nickel(II) complexes dichlorobis(1-tert-butylimidazole-2-thione)nickel(II) [Ni(tm t-Bu)2Cl2] (1), dinitratobis(1-tert-butylimidazole-2-thione)nickel(II) [Ni(tm t-Bu)2(NO3)2] (2), dichloro-bis(3-phenyl-5-methyl-pyrazole)(1-tert-butylimidazole-2-thione)nickel(II) [Ni(pzPh,MeH)2(tm t-Bu)Cl2] (3) and dinitratobis(3-phenyl-5-methyl-pyrazole)(1-tert-butylimidazole-2-thione)nickel(II) [Ni(pzPh,MeH)2(tm t-Bu)(NO3)2] (4) have been synthesized and studied. The single crystal X-ray diffraction analysis was carried out for 1 and 4 {Bruker Kappa Apex-II CCD diffractometer, MoK α radiation}. Crystal data for 1: monoclinic C2/c, a = 16.949(2) Å, b = 8.6647(10) Å, c = 15.461(3) Å, β = 117.662(4)°, V = 2011.1(5) Å3, Z = 4, D calc = 1.460 g/cm3. Crystal data for 4: triclinic P-1, a = 9.9775(7) Å, b = 11.2254(8) Å, c = 14.8068(10) Å, α = 75.401(4)°, β = 87.422(4)°, γ = 74.874(4)°, V = 1548.86(19) Å3, Z = 2, D calc = 1.405 g/cm3. Coordination core of complex 1 adopts distorted tetrahedral geometry whereas core 4 has distorted octahedral geometry. The bonded nitrates are of two types coordinating as monodentate and bidentate ligands.  相似文献   

9.
The complexes [AgL2(NO3)] (I) and [AgL2(CH3SO3)] · H2O (II) (L is 2-methylquinoline, C10H9N) have been synthesized and structurally characterized by single-crystal X-ray diffraction. Crystals of I are monoclinic, space group P21/n, a = 9.296(1) Å, b = 13.495(1) Å, c = 14.931(1) Å, β = 95.06(1)°, V = 1865.8(3) Å3, ρcalc = 1.624 g/cm3, Z = 4. Crystals of II are monoclinic, space group P21/n, a = 13.147(1) Å, b = 11.767(1) Å, c = 13.814(1) Å, β = 96.06(1)°, V = 2124.3(3) Å3, ρcalc = 1.599 g/cm3, Z = 4. Compounds I and II are composed of discrete complexes of similar structure but with different orientation of the methyl groups of ligand L (trans and cis arrangement, respectively). Both anions, NO 3 - and CH3SO 3 - function as a chelating weakly bound ligand for the Ag+ ion. The presence of water molecules in II is favorable for the formation of dimeric supramolecular moieties between the centrosymmetrically arranged Ag+ complexes with 2-methylquinoline. The luminescence spectra of solid complexes I and II showed a bathochromic shift as compared to the spectrum of L in acetonitrile. Complexes I and II have been characterized by 1H and 13C{H} NMR spectra in CD3CN.  相似文献   

10.
Phytochemical investigation of EtOAc extract of Smilax excelsa has led to isolation and structure elucidation of five compounds. The structures of these compounds are established by different spectroscopic techniques including 1D and 2D-NMR, HRMS and ECD spectroscopy. The compounds were: solanesol (1), violasterol A (2), trans-resveratrol (3), 5-O-caffeoylshikimic acid (4) and 6-O-caffeoyl-β-d-fructofuranosyl-(2-1)-α-d-glucopyranoside (5). The configuration of compound 2 was established by electronic circular dichroism (ECD) spectroscopy. Meanwhile the cytotoxicity and antibacterial activity of the compounds were evaluated by MTT and MIC assays. Compounds 1 and 2 showed promising inhibition on MCF-7 cell line with IC50 of 161.6 and 190.0 µM, respectively. Also compounds 2 and 3 illustrated activity against Staphylococcus aureus with MIC values of 142.5 and 136.9 µM, respectively.  相似文献   

11.
The (DienH3)[AuCl4]3 · H2O (I) and (DienH3)2[AuCl4]Cl5 (II) compounds were obtained by the reaction of HAuCl4 with diethylenetriamine trihydrochloride (DienH3Cl3) in hydrochloric acid. The compounds were characterized by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. Crystals of I and II are monoclinic with space group P21/n. For I, a = 12.2314(3) Å, b = 14.6077(5) Å, c = 13.2680(5) Å, β = 106.7350(10)°, V = 2270.22(13) Å3, Z = 8. For II, a = 6.62990(10) Å, b = 17.9026(5) Å, c = 10.3661(3) Å, β = 101.9230(10)°, V = 1203.83(5) Å3, Z = 2. Both structures are ionic. The gold atoms in I and II have a 4 + 2 coordination environment. The Au-Cl bond lengths are within 2.276–2.294 Å, and the axial Au…Cl contacts are within 3.315–3.405 Å. The diethylenetriammonium cation in I and II has different conformations.  相似文献   

12.
Single crystal X-ray diffraction is used to investigate two synthesized β-diketonate complexes of copper(II) with aminopyridine: Cu(4-NH2Py)(aa)2 (I) and Cu(4-NH2Py)(hfa)2 (II). The crystals of I and II have a monoclinic system; the unit cell parameters of I are: P21/n space group, a = 8.2921(3) Å, b = 14.7243(5) Å, c = 13.4970(4) Å, β = 102.426(1)°, V = 1609.32(9) Å3, Z = 4; for II: C2/c space group, a = 23.5704(5) Å, b = 11.4977(2) Å, c = 16.0285(3) Å, β = 109.265(1)°, V = 4100.6(1) Å3, Z = 8. The structures of I and II are molecular; they are composed of isolated molecules. The coordination polyhedron of the copper atom is formed by the O atoms of two acetylacetonate ligands (Cu-O 1.940(2)–2.171(2) I and the O atoms of two hexafluoroacetylacetonate ligands (Cu-O 1.940(2)–2.215(3) Å) in II. The molecules of 4-NH2Py are bonded to the copper atom via the nitrogen atom of the aromatic ring (Cu-N 2.008(2) Å in I and Cu-N 1.978(3) Å in II). Noncoordinated amino groups join the molecules of the complexes together by means of N-H…O hydrogen bonds.  相似文献   

13.
Block copolymers poly(endo-N-3,5-bis(trifluoromethyl)biphenyl-norbornene-pyrrolidine)-block-poly(exo-N-(cinnamoyloxyethyl)-7-oxanorborn-5-ene-2,3-dicarboximide) (endo-PTNP-b-exo-PCONBI) and poly(exo-N-3,5-bis(trifluoromethyl)biphenyl-norbornene-pyrrolidine)-block-poly(exo-N-(cinnamoyloxyethyl)-7-oxanorborn-5-ene-2,3-dicarboximide) (exo-PTNP-b-exo-PCONBI) were synthesized by ring-opening metathesis polymerization. The endo- or exo-PTNP served as the high dielectric functional chain, and exo-PCONBI acted as the crosslinking segment. The endo-PTNP-b-exo-PCONBI, in which endo-PTNP has a high content of trans double bond and adopts isotactic configuration, shows a dielectric constant (ε) of 15.5, whereas exo-PTNP-b-exo-PCONBI, in which exo-PTNP has 67% trans double bonds and atactic microstructure, displays relatively low ε of 7.1. The cinnamate groups in exo-PCONBI were crosslinked to form three-dimensional network by cycloaddition reaction under UV irradiation. Exposed to UV-light for 10 min, the cinnamate group in polymer films has a crosslinking conversion of 36%, as determined by UV-Vis absorption measurements. By photocrosslinking, the polymer film has an increased ε of 16.6, a dielectric loss of 0.03, an elevated glass-transition temperature of 137 °C, and an enhanced decomposition temperature of 405 °C, compared to those of polymer films without irradiation.  相似文献   

14.
In continuation of a systematic study of bis(citrate)germanates, we synthesized a number of heterometallic germanium(IV) and 3d metal complexes based in citric acid (H4Cit) with the molecular formula [M(H2O)6][Ge(HCit)2] · nH2O, where M = Fe, n = 4 (I); Co, n = 2 (II); Ni, n = 2 (III); Cu, n = 1 (IV); Zn, n = 3 (V). The complexes were characterized by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction analysis of compound I was performed. Crystals are monoclinic, a = 10.091(4) Å, b = 11.126(4) Å, c = 10.996(4) Å, β = 100.966(6)°, V = 1212.1(8) Å3, Z = 4, space group P21/n, R1 = 0.0561 for 2266 reflections with I > 2σ(I). Compound I is composed of centrosymmetric octahedral complexes-[Ge(HCit)2]2? anions and [Fe(H2O)6]2+ cations—and crystallization water molecules. Structural units in compound I are combined by a hydrogen bond system.  相似文献   

15.
Heteroligand complexes [Co2(HMTA)(iso-Bu2PS2)4] (I) (μeff = 4.67 μB) and [Cd2(HMTA)(iso-Bu2PS2)4] (II) have been synthesized. Single crystals of compounds I and II have been obtained. The crystals are monoclinic: a = 32.622(2) Å, b = 9.4891(6) Å, c = 21.7570(13) Å, β = 125.774(1)o, V = 5464.3(6) Å,3, Z = 4, ρcalcd = 1.331 g/cm3 for I; a = 34.6092(7) Å, b = 9.5595(2) Å, c = 22.3473(5) Å, β = 127.144(1)o, V = 5893.5(2) Å, Z = 4, ρcalcd = 1.355 g/cm3 for II; space group for both complexes C2/c. Structures I and II are based on discrete binuclear molecules. The coordination polyhedra of the Co and Cd atoms are distorted tetragonal pyramids NS4, with the bases formed by four S atoms of two bidentate chelating ligand iso-Bu2PS 2 ? and the axial vertices occupied by N atoms of bidentate bridging HMTA ligand. The character of interaction of the molecules in structures I and II is considered.  相似文献   

16.
Two new square planar complexes with the formula Co(L)2 · CH3OH (1) and Ni(L)2 · CH3OH (2) (HL = HN{C(Me)=NH}2 = N-acetimidoylacetamidine) have been synthesized by solvothermal reactions in methanol/acetonitrile. N-acetimidoylacetamidine ligand was derived from the self-condensation reaction of acetonitrile, and the reaction was promoted by the cooperation of M(II) (M = Co in 1 and M = Ni in 2) with diphenylcarbazide. 1 and 2 are characterized by single crystal X-ray diffraction, elemental analysis and infrared spectrum. Both complexes crystallize in the monoclinic space group P21/c with a = 9.329(6) Å, b = 11.494(7) Å, c = 13.040(8) Å, β = 92.945(11)°, V = 1396.3(16) Å3 and Z = 4 for 1, and a = 9.323(4)Å, b = 11.512(5) Å, c = 13.020(6)Å, β = 92.819(7)°, V = 1395.7(10)Å3 and Z = 4 for 2.  相似文献   

17.
The correlations between the global hardness (η), hyperconjugative anomeric effect, Pauli exchange-type repulsions, electrostatic model associated with dipole–dipole interaction and structural parameters in 2-fluorotetrahydropyran, -thiopyran, -selenopyran (13) and their chloro- (46) and bromo-analogs (79) were investigated by means of the conventional and range-corrected functionals and natural bond orbital (NBO) interpretation. By deletion of the HC-exo-AE and HC-endo-AE, the equatorial conformations of compounds 19 become more stable than their corresponding axial forms, revealing that anomeric relationships in compounds 19 have the hyperconjugative anomeric effect origins while the electrostatic model associated with dipole–dipole interaction does not play a determining role on the variations of the anomeric relationships in these compounds. The anomeric relationships in compounds 13 have no Pauli exchange-type repulsions origin, but it has a significant impact on the conformational preferences in compounds 46 and 79. A canonical molecular orbital interpretation was conducted to investigate the correlations between the linear combinations of natural bond orbitals in the HOMOs, LUMOs and the global hardness (η) values. There is a direct relationship between the hyperconjugative anomeric effect, global hardness (η) and zero-point energies in compounds 13, 46 and 79. The harder axial conformations with the greater hyperconjugative anomeric effect and zero-point energy values are more stable than their corresponding equatorial forms.  相似文献   

18.
The tetranuclear cluster rhenium complexes Cs3H[Re4Q4Cl12] · 3.33H2O (Q = Te (I) and Se (II)) with the Cl atoms as terminal ligands were obtained and structurally characterized. The structures of complexes I and II were determined by X-ray diffraction analysis. Their isostructural crystals are monoclinic; space group C2, Z = 6; a = 26.403(8) Å, b = 16.495(5) Å, c = 11.744(3) Å, β = 91.25(2)°, V = 5113(2) Å3 (I); a = 26.573(3) Å, b = 16.461(3) Å, c = 11.726(2) Å, β = 91.381(4)°, V = 5127.6(14) Å3 (II).  相似文献   

19.
The structures of three novel octahedral rhenium cluster compounds [Re6S8(CN)2(py)4]·H2O (1), [Re6S8(CN)2(4-Mepy)4] (2), [Re6S8(CN)2(4-Mepy)4]·4-Mepy (3) (py = pyridine, 4-Mepy = 4-methylpyridine) are determined by X-ray crystallography. Crystal data are: C2/m space group, a = 14.813(1) Å, b = 14.772(1) Å, c = 9.2122(6) Å, β = 119.085(2)°, V = 1761.7(2) Å3, d x = 3.318 g/cm3, R = 0.0585 (1); I41/amd space group, a = 16.0018(3) Å, c = 14.7186(5) Å, V = 3768.81(16) Å3, d x = 3.169 g/cm3, R = 0.0489 (2); P21/c space group, a = 9.0452(4) Å, b = 15.8065(7) Å, c = 15.2951(6) Å, β = 103.700(2)°, V = 2124.57(16) Å3, d x = 2.957 g/cm3, R = 0.0245 (3). Molecular cluster complexes interact via π-π stacking affording 3D frameworks in 1 and 2 and chains in 3.  相似文献   

20.
A new mononuclear cobalt(III) complex, [CoL2(N3)]2 · CH3OH (I), and a new mononuclear zinc(II) complex, [ZnLCl(CH3OH)] (II) (HL = 4-chloro-2-[(2-morpholin-4-ylethylimino)methyl]phenol), were prepared and structurally characterized by elemental analyses, infrared spectroscopy, and single- crystal X-ray diffraction. The crystal of I is monoclinic: space group P21/c, a = 18.742(2) Å, b = 15.197(2) Å, c = 25.646(2) Å, β = 125.996(3)°, V = 5909.8(11) Å3, Z = 4. The crystal of II is monoclinic: space group P21/c, a = 7.257(1) Å, b = 24.707(2) Å, c = 9.637(1) Å, β = 101.557(2)°, V = 1692.9(3) Å3, Z = 4. The Co atom in I is in an octahedral coordination, and the Zn atom in II is in a trigonal-bipyramidal coordination. The urease inhibitory test shows that complex I has strong urease inhibitory activity, while complex II has no activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号