首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrodes (anode and cathode) have an important role in the efficiency of a microbial fuel cell (MFC), as they can determine the rate of charge transfer in an electrochemical process. In this study, nanoporous gold electrode, prepared from commercially available gold-made compact disk, is utilized as the anode in a two-chamber MFC. The performance of nanoporous gold electrode in the MFC is compared with that of gold film, carbon felt and acid-heat-treated carbon felt electrodes which are usually employed as the anode in the MFCs. Electrochemical surface area of nanoporous gold electrode exhibits a 7.96-fold increase rather than gold film electrode. Scanning electron microscopy analysis also indicates the homogeneous biofilm is formed on the surface of nanoporous gold electrode, while the biofilm formed at the surface of acid-heat-treated carbon felt electrode shows rough structure. Electrochemical studies show although modifications applied on carbon felt electrodes improve its performance, nanoporous gold electrode, due to its structure and better electrochemical properties, acts more efficiently as the MFC’s anode. The maximum power density produced by nanoporous gold anode is 4.71 mW m?2 at current density of 16.00 mA m?2, while this value for acid-heat-treated carbon felt anode is 3.551 mW m?2 at current density of 9.58 mA m?2.  相似文献   

2.
《Electroanalysis》2006,18(7):703-711
A simple procedure was developed to prepare a glassy carbon electrode modified with carbon nanotubes (CNTs) and thionin. Abrasive immobilization of CNTs on a GC electrode was achieved by gently rubbing the electrode surface on a filter paper supporting carbon nanotubes, then immersing the GC/CNTs‐modified electrode into a thionin solution (electroless deposition) for a short period of time (5–50 s for MWCNTs and 5–120 s for SWCNTs ). Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range 2–12. The electrochemical reversibility and stability of modified electrode prepared with incorporation of thionin into CNTs film was compared with usual methods for attachment of thionin to electrode surfaces such as electropolymerization and adsorption on the surface of preanodized electrodes. The formal potential of redox couple (E°′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of thionin immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2 and 3.2×10?10 mol cm?2 for MWCNTs and SWCNTs, respectively. The transfer coefficient (α) was calculated to be 0.3 and 0.35 and heterogeneous electron transfer rate constants (Ks) were 65 s?1 and 55 s?1 for MWCNTs/thionin and SWCNTs/thionin‐modified GC electrodes, respectively. The results clearly show a great facilitation of the electron transfer between thionin and CNTs adsorbed on the electrode surface. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of electrodes.  相似文献   

3.
李青山  蒋波涛 《分析化学》1995,23(4):426-429
本文阐述了介体行丢失速率与电极基线电流大小的关系,以此为依据,讨论了介体液态石蜡中的溶解度对介体丢失的影响,通过向电极表面添加DEAE-葡萄糖来减小带正电荷的介体丢失速率,研究了DEAE-葡萄糖对葡萄糖氧化酶介体电极测试性能的影响。  相似文献   

4.

New strategies are proposed for modification of the anode of a Microbial Fuel Cell (MFC). Immobilization of yeast cells as electrogenic microorganism in MFC was reported using alginate. Yeast cells entrapment within alginate matrices was done through films deposited at the surface of a carbon felt electrode and the resulting anodes were characterized by chronoamperometry. Yeast entrapped within alginate films on carbon felt oxidized glucose and generates a current by direct and mediated electrons transfer from yeast cells to the carbon electrode. The result substantiated that immobilization of yeast for MFC could be a promising method to product green electricity.

  相似文献   

5.
Redox flow batteries offer a potential solution to an increase in renewable energy generation on the grid by offering long-term, large-scale storage and regulation of power. However, they are currently underutilised due to cost and performance issues, many of which are linked to the microstructure of the porous carbon electrodes used. Here, for the first time, we offer a detailed study of the in situ effects of compression on a commercially available carbon felt electrode. Visualisation of electrode structure using X-ray computed tomography shows the non-linear way that these materials compress and various metrics are used to elucidate the changes in porosity, pore size distribution and tortuosity factor under compressions from 0%-90%.  相似文献   

6.
Electrochemistry of hot electrons in fully aqueous solutions at tetrahedral amorphous carbon thin film electrodes is discussed. The generation of these highly reducing chemical species was confirmed by normal pulse voltammetry and several electrochemiluminescent systems. Electron transfer into pre-existing solvent cavities was observed at approximately −2.65 V vs. Ag/AgCl (sat.). Electrogenerated hot electrons were utilized as chemiluminescent mediators in heterogeneous sandwich immunoassay of Serum Amyloid A. The calibration curve was linear over four orders of magnitude and the detection limit was 85 ng L−1 that demonstrates the efficiency of hot electron generation at this electrode material.  相似文献   

7.
Carbon paste electrodes modified with a phenoxazine derivative, Meldola blue, and a phenothiazine derivative, methylene green, both strongly adsorbed on a synthetic zeolite were investigated using either glassy carbon powder (Sigradur K, SK) or single‐walled carbon nanotubes (SWCNT) as conductive electrode material. In the case of SWCNT based electrodes, the formal potential of both mediators was pH dependent, as expected for a redox process involving proton transfer. In contrast, the formal potential of both mediators of SK based modified electrodes was practically insensitive to pH. This behavior is discussed in terms of interactions existing in the heterogeneous system mediator‐zeolite‐electrode material.  相似文献   

8.
In this paper, electrochemical behaviour of phenol in a carbon felt electrode is studied. An adsorption process on electrode surface that inhibits polymer formation after oxidation of phenol was confirmed. In this work we propose a phenol determination method based on direct electrochemical oxidation on carbon felt electrodes after an accumulation process.  相似文献   

9.
Bin Cao  Xifei Li 《物理化学学报》2020,36(5):1905003-0
钠离子电池是目前新兴的低成本储能技术,因在大规模电化学储能中具有较好的应用前景而受到了国内外学者广泛的关注与研究。作为钠离子电池的关键电极材料之一,非石墨的炭质材料因具有储钠活性高、成本低廉、无毒无害等诸多优点,而被认为是钠离子电池实际应用时负极的最佳选择。本文详细综述了目前钠离子电池炭基负极材料的研究进展,重点介绍了炭质材料的储钠机理与特性,分析了炭材料结构与电化学性能之间的关系,探讨了其存在的问题,为钠离子电池炭基负极材料的发展提供有益的认识。  相似文献   

10.
Electrochemical energy storage systems with high specific energy and power as well as long cyclic stability attract increasing attention in new energy technologies. The principles for rational design of electrodes are discussed to reduce the activation, concentration, and resistance overpotentials and improve the active material efficiency in order to simultaneously achieve high specific energy and power. Three dimensional(3D)nanocomposites are currently considered as promising electrode materials due to their large surface area,reduced electronic and ionic diffusion distances, and synergistic effects. This paper reviews the most recent progress on the synthesis and application of 3D thin film nanoelectrode arrays based on aligned carbon nanotubes(ACNTs) directly grown on metal foils for energy storages and special attentions are paid on our own representative works. These novel 3D nanoelectrode arrays on metal foil exhibit improved electrochemical performances in terms of specific energy, specific power and cyclic stability due to their unique structures.In this active materials coated ACNTs over conductive substrate structures, each component is tailored to address a different demand. The electrochemical active material is used to store energy, while the ACNTs are employed to provide a large surface area to support the active material and nanocable arrays to facilitate the electron transport. The thin film of active materials can not only reduce ion transport resistance by shortening the diffusion length but also make the film elastic enough to tolerate significant volume changes during charge and discharge cycles. The conductive substrate is used as the current collector and the direct contact of the ACNT arrays with the substrate reduces significantly the contact resistance. The principles obtained from ACNT based electrodes are extended to aligned graphene based electrodes. Similar improvements have been achieved which confirms the reliability of the principles obtained. In addition, we also discuss and view the ongoing trends in development of aligned carbon nanostructures based electrodes for energy storage.  相似文献   

11.
The efficiencies of dioxygen reduction on common carbonaceous materials were compared using voltammetry and fuel cell measurements. Carbon paper (CP), carbon fibre (CF) or carbon cloth (CC) conducting supports were covered under water pump pressure with multiwalled carbon nanotubes (MWCNTs) to increase the working surface of the electrode, improve connectivity with enzyme molecules and provide direct electron transfer. Laccase was the biocathode catalyst catalyzing 4-electron reduction of oxygen to water on the nanostructured electrode. CP carbon paper was selected as the favourable electrode substrate, since it provided best durability holding firmly the carbon nanotubes together with the enzyme at the electrode surface. Zinc disc or fructose dehydrogenase was used as anode in the hybrid fuel cell and biofuel cell, respectively. The characteristics under externally applied resistances and potential-time dependencies under flowing solution conditions were evaluated. The hybrid fuel cell based on Zn anode and CP supported laccase cathode gave the best results in terms of power and open circuit potential (OCP). The full biofuel cell based on laccase and fructose dehydrogenase shows lower OCP but the power–time dependencies were similar to those of the hybrid biofuel cell. The nanostructured surfaces show good supercapacitor properties due to the presence of carbon nanotubes at the electrode surface. The fuel cells undergo self-charging/discharging and, therefore, can be conveniently employed in pulsed-work regime to power external devices.  相似文献   

12.
The Clostridium acetobutylicum [FeFe]-hydrogenase HydA has been investigated as a hydrogen production catalyst in a photoelectrochemical biofuel cell. Hydrogenase was adsorbed to pyrolytic graphite edge and carbon felt electrodes. Cyclic voltammograms of the immobilized hydrogenase films reveal cathodic proton reduction and anodic hydrogen oxidation, with a catalytic bias toward hydrogen evolution. When corrected for the electrochemically active surface area, the cathodic current densities are similar for both carbon electrodes, and approximately 40% of those obtained with a platinum electrode. The high surface area carbon felt/hydrogenase electrode was subsequently used as the cathode in a photoelectrochemical biofuel cell. Under illumination, this device is able to oxidize a biofuel substrate and reduce protons to hydrogen. Similar photocurrents and hydrogen production rates were observed in the photoelectrochemical biofuel cell using either hydrogenase or platinum cathodes.  相似文献   

13.
生物膜电极在以苯酚为燃料的微生物燃料电池中的应用   总被引:1,自引:0,他引:1  
以苯酚为燃料, 生物膜电极为负极, Ti/SnO2-Sb2O5/PbO2电极为正极, 构建了双室微生物燃料电池. 利用微电流驯化法和自然驯化法分别制备了生物膜电极, 研究了微生物的挂膜方法、 挂膜时间和负极基底材料种类对微生物燃料电池产电能力的影响. 结果表明, 微电流驯化法优于自然驯化法, 微电流驯化法制备的生物膜电极更利于电池的产电; 微生物的挂膜时间为8 d时, 电池的产电能力最高, 其最大输出功率密度达到39 mW/m2; 不同基底材料生物膜电极所组建的微生物燃料电池产电能力高低顺序为碳毡>石墨>钛网>泡沫钛.  相似文献   

14.
Carbon cloth was proposed as an ideal model to investigate the effect of surface functional groups. The introduction of surface carboxyl groups significantly enhances the capacities of carbonaceous oxygen diffusion electrodes for the lithium-oxygen batteries.  相似文献   

15.
The replacement of a non-conductive organic binder with a conductive room temperature ionic liquid in fabricating carbon paste electrode has been made. This new electrode due to its enhanced conductivity presented very large current response from electroactive substrates. The novel carbon paste electrode was bulk-modified via the uniform dispersion of Keggin-type phospho polyoxomolybdate (PMo12) in bulky carbons, which possessed excellent electrocatalytic activity for the reduction of nitrite. The pronounced multi-electron catalytic ability was ascribed to the used hydrophobic ionic liquid which constructed an excellent charge-transfer bridge in the bulk of carbon paste electrode, thus facilitated the intake of electrons from reduced PMo12 mediators. In view of their prominent properties, the carbon paste electrode using ionic liquid binder and its bulk-modified electrode take on good prospects of the application in physical chemistry and electroanalytical chemistry fields.  相似文献   

16.
The development of a solid-contact potentiometric sensor based on conducting rubbers using a carbon nanotubes ink is described here. Commercial rubbers are turned into conductive ones by a simple and versatile method, i.e. painting an aqueous dispersion of single-walled carbon nanotubes on the polymer surface. On this substrate, both the working ion-selective electrode and the reference electrode are built in order to form an integrated potentiometric cell. As a proof-of-principle, selective potassium electrodes are fully characterized giving comparable performances to conventional electrodes (sensitivity, selectivity, stability, linear range, limit of detection and reproducibility). As an application of the rubber-based electrodes, a bracelet was constructed to measure potassium levels in artificial sweat. Since rubbers are ubiquitous in our quotidian life, this approach offers great promise for the generation of chemical information through daily objects.  相似文献   

17.
Biomass‐derived carbon materials have received special attention as efficient, low‐cost, active materials for charge‐storage devices, regardless of the power system, such as supercapacitors and rechargeable batteries. In this Minireview, we discuss the influence of biomass‐derived carbonaceous materials as positive or negative electrodes (or both) in high‐energy hybrid lithium‐ion configurations with an organic electrolyte. In such hybrid configurations, the electrochemical activity is completely different to conventional electrical double‐layer capacitors; that is, one of the electrodes undergoes a Faradaic reaction, whilst the counter electrode undergoes a non‐Faradaic reaction, to achieve high energy density. The use of a variety of biomass precursors with different properties, such as surface functionality, the presence of inherent heteroatoms, tailored meso‐/microporosity, high specific surface area, various degrees of crystallization, calcination temperature, and atmosphere, are described in detail. Sodium‐ion capacitors are also discussed, because they are an important alternative to lithium‐ion capacitors, owing to the low abundance and high cost of lithium. The electrochemical performance of carbonaceous electrodes in supercapacitors and rechargeable batteries are not discussed.  相似文献   

18.
《中国化学快报》2019,30(12):2328-2332
In order to achieve the high capacities of carbonaceous oxygen diffusion electrodes for aprotic lithium–oxygen batteries (Li–O2 batteries), most efforts currently focus on the design of rational porous architectures. Only few works study the surface chemistry effect that might be a critical factor influencing the capacities of carbonaceous electrodes. In addition, the surface chemistry effect is very difficult to be studied in composite electrodes due to the influences of binders and additives. Herein, we propose chemically activated carbon cloth (CACC) as an ideal model to investigate the effect of surface functional groups on the discharge capacities of carbonaceous oxygen electrodes for Li–O2 batteries. The intrinsic surface chemistry effect on the performance of carbonaceous cathode is directly observed for the first time without the influences of binders and additives. Results indicate that the surface carboxyl groups introduced by the chemical treatment not only function as the appropriate nucleation sites for Li2O2 but also induce the formation of toroid-like Li2O2. Thus, the surface carboxyl modification enhances the discharge capacities from 0.48 mAh/cm2 of pristine carbon cloth to 1.23 mAh/cm2 of CACC. This work presents an effective way to further optimize the carbonaceous oxygen electrodes via surface functional group engineering  相似文献   

19.
以涂敷在碳布基体上的金属有机骨架多孔材料HKUST-1为硬模板,使用单极脉冲法沉积聚苯胺制备了具有电活性的多孔复合电极Micro-PANI/CC,同时以空白碳布(Carbon Cloth,CC)为基体制备了聚苯胺电极PANI/CC,并研究、比较了它们的电化学电容器性能. 使用XRD、SEM分析了所得电极的结构,结果显示电极Micro-PANI/CC表面具有大量的纳米孔状结构. 在0.5 mol·L-1硫酸为电解液的体系中测试了循环伏安、恒电流充放电、阻抗以及稳定性等特性,在扫速为2 mV·s-1 时,电极Micro-PANI/CC和PANI/CC的比电容分别为895.6 F·g-1和547.6 F·g-1,在其它测试条件相同的情况下,前者的比电容保持在后者的1.64倍以上,且具有更好的倍率特性、更低的电阻和较好的稳定性等特点,说明这种以HKUST-1为模板形成的多孔聚苯胺更适于超级电容器电极材料.  相似文献   

20.
The preparation, electrochemical and catalytic behaviour of glassy carbon electrodes modified by anthra-9,10-quinone, its amino derivatives and dyes were investigated. The stability of the modified electrodes was studied by cyclic voltammetry in acidic and neutral media. The electrocatalytic ability of the modified electrodes for the reduction of dioxygen to hydrogen peroxide was examined by cyclic voltammetry, chronoamperometry and chronocoulometry techniques. The influence of pH on the electrochemical and catalytic behaviour was studied and pH 5.0–8.0 was chosen as the optimum working pH by comparing the shift in oxygen reduction potential. The anthraquinone-adsorbed glassy carbon electrodes possess excellent electrocatalytic abilities for dioxygen reduction with overpotential ranging from 280 to 560 mV lower than that at a plain glassy carbon electrode. Hydrodynamic voltammetric studies were performed to determine the heterogeneous rate constants for the reduction of O2 at the surface of the modified electrodes, mass specific activity of the anthraquinones used and the apparent diffusion coefficient of O2 in buffered aqueous O2-saturated solutions. Studies showed the involvement of two electrons in dioxygen reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号