首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The epothilones, a family of macrolactone natural products produced by the myxobacterial species Sorangium cellulosum, are of current clinical interest as antitumor agents. Inspection of the structure of the epothilones suggests a hybrid polyketide/nonribosomal peptide biosynthetic origin, and the recent sequencing of the epothilone biosynthetic gene cluster has validated this proposal. Here we have examined unnatural substrates with the first two enzymes of the biosynthetic pathway, EpoA and EpoB, to investigate the enzymatic construction of alternate heterocyclic structures and the subsequent elongation of these products by the third enzyme of the pathway, EpoC. The epothilone biosynthetic machinery can utilize serine to install an oxazole in place of a thiazole in the epothilone structure and will tolerate functionalized donor groups from the EpoA-ACP domain to produce epothilone fragments modified at the C21 position. These studies with the early enzymes of the epothilone biosynthesis cluster suggest that combinatorial biosynthesis may be a viable means for producing a variety of epothilone analogues that incorporate diversity into the heterocycle starter unit.  相似文献   

2.
Many virulence factors and bioactive compounds with antifungal, antimicrobial, and antitumor properties are produced via the non-ribosomal peptide synthetase (NRPS) or polyketide synthase(PKS) paradigm. During the biosynthesis of these natural products, substrates, intermediates and side products are covalently tethered to the NRPS or PKS catalyst, introducing mass changes, making these biosynthetic systems ideal candidates for interrogation by large molecule mass spectrometry. This review serves as an introduction into the application of electrospray ionization Fourier-Transform massspectrometry (ESI-FTMS) to investigate NRPS and PKS systems. ESI-FTMS can be used to understand substrate tolerance, timing of covalent linkages, timing of tailoring reactions and the transfer of substrates and biosynthetic intermediates from domain to domain. Therefore we not only highlight key mechanistic insights for thiotemplate systems as found on the enterobactin,yersiniabactin, epothilone, clorobiocin, coumermycin, pyoluteorin, gramicidin, mycosubtilin, C-1027,6-deoxyerythronolide B and FK520 biosynthetic pathways, but we also explain the approaches taken to identify active sites from complex digests and compare the FTMS based assay to traditional assays and other mass spectrometric techniques. Although mass spectrometry was introduced over two decades ago to investigate NRPS and PKS biosynthetic systems, this is the first review devoted to this methodology.  相似文献   

3.
Natural products of microbial origin are widely used as pharmaceuticals and in agrochemistry. These compounds are often biosynthesized by multifunctional megasynthetases whose genetic engineering and heterologous expression offer considerable promise, especially if the natural hosts are genetically difficult to handle, slow growing, unculturable, or even unknown. We describe a straightforward strategy that combines the power of advanced DNA engineering (recombiogenic cloning) in Escherichia coli with the utility of pseudomonads as the heterologous host for the analysis and mutagenesis of known and unknown secondary metabolite pathways. The myxochromide S biosynthetic gene cluster from Stigmatella aurantiaca was rebuilt and engineered in E. coli to contain the elements required for expression in pseudomonads. The successful production in Pseudomonas putida, at unprecedented levels, demonstrates the feasibility of the new approach to the analysis and mutagenesis of these important pathways.  相似文献   

4.
The design, chemical synthesis, and biological evaluation of a series of cyclopropyl and cyclobutyl epothilone analogues (3-12, Figure 1) are described. The synthetic strategies toward these epothilones involved a Nozaki-Hiyama-Kishi coupling to form the C15-C16 carbon-carbon bond, an aldol reaction to construct the C6-C7 carbon-carbon bond, and a Yamaguchi macrolactonization to complete the required skeletal framework. Biological studies with the synthesized compounds led to the identification of epothilone analogues 3, 4, 7, 8, 9, and 11 as potent tubulin polymerization promoters and cytotoxic agents with (12R,13S,15S)-cyclopropyl 5-methylpyridine epothilone A (11) as the most powerful compound whose potencies (e.g. IC(50) = 0.6 nM against the 1A9 ovarian carcinoma cell line) approach those of epothilone B. These investigations led to a number of important structure-activity relationships, including the conclusion that neither the epoxide nor the stereochemistry at C12 are essential, while the stereochemistry at both C13 and C15 are crucial for biological activity. These studies also confirmed the importance of both the cyclopropyl and 5-methylpyridine moieties in conferring potent and potentially clinically useful biological properties to the epothilone scaffold.  相似文献   

5.
The toxicity of aromatics frequently limits the yields of their microbial synthesis. For example, the 5% yield of catechol synthesized from glucose by Escherichia coli WN1/pWL1.290A under fermentor-controlled conditions reflects catechol's microbial toxicity. Use of in situ resin-based extraction to reduce catechol's concentration in culture medium and thereby its microbial toxicity during its synthesis from glucose by E. coli WN1/pWL1.290A led to a 7% yield of catechol. Interfacing microbial with chemical synthesis was then explored where glucose was microbially converted into a nontoxic intermediate followed by chemical conversion of this intermediate into catechol. Intermediates examined include 3-dehydroquinate, 3-dehydroshikimate, and protocatechuate. 3-Dehydroquinate and 3-dehydroshikimate synthesized, respectively, by E. coli QP1.1/pJY1.216A and E. coli KL3/pJY1.216A from glucose were extracted and then reacted in water heated at 290 degrees C to afford catechol in overall yields from glucose of 10% and 26%, respectively. The problematic extraction of these catechol precursors from culture medium was subsequently circumvented by high-yielding chemical dehydration of 3-dehydroquinate and 3-dehydroshikimate in culture medium followed by extraction of the resulting protocatechuate. After reaction of protocatechuate in water heated at 290 degrees C, the overall yields of catechol synthesized from glucose via chemical dehydration of 3-dehydroquinate and chemical dehydration of 3-dehydroshikimate were, respectively, 25% and 30%. Direct synthesis of protocatechuate from glucose using E. coli KL3/pWL2.46B followed by its extraction and chemical decarboxylation in water gave a 24% overall yield of catechol from glucose. In situ resin-based extraction of protocatechaute synthesized by E. coli KL3/pWL2.46B followed by chemical decarboxylation of this catechol percursor was then examined. This employment of both strategies for dealing with the microbial toxicity of aromatic products led to the highest overall yield with catechol synthesized in 43% overall yield from glucose.  相似文献   

6.
As a continuous work to find more epothilone congeners produced by the epothilones A and B producing Sorangium cellulosum strain So0157-2 in the large-scale fermentation (5000?L), we reinvestigated the chemical compositions of the fermentation broth. Consequently, two new epothilone variants (1-2) and one new natural epothilone derivative (3) were isolated from the fermentation broth. Their structures were established as 16-ethyl epothilone B (1), 6-desmethyl-16-hydroxymethyl epothilone C (2) and 20-ethyl epothilone A (3), respectively, by an extensive NMR analysis.  相似文献   

7.
A concise modular laboratory construction of the epothilone class of promising antitumor agents has been accomplished. For the first time in the epothilone area, the new synthesis exploits the power of ring-closing olefin metathesis (RCM) in a stereospecific way. Previous attempts at applying RCM to epothilone syntheses have been repeatedly plagued by complete lack of stereocontrol in the generation of the desired 12,13-olefin geometry in the products. The isolation of epothilone 490 (3) prompted us to reevaluate the utility of the RCM procedure for fashioning the 10,11-olefin, with the Z-12,13-olefin geometry already in place. Olefin metathesis of the triene substrate 12 afforded the product diene macrolide in stereoselective fashion. For purposes of greater synthetic convergency, the C3-(S)-alcohol was fashioned late in the synthesis, using chiral titanium-mediated aldol conditions with the entire O-alkyl fragment as a C15 acetate as the enolate component. Examination of the effects of protecting groups on the RCM process showed that deprotection of the C7 alcohol has a beneficial effect on the reaction yield. Performing the RCM as the last synthetic step in the sequence afforded a 64% yield of only the desired E-olefin. Selective diimide reduction of the new 10,11-olefin yielded 12,13-desoxyepothilone B, our current clinical candidate, demonstrating the utility of this new RCM-reduction protocol in efficiently generating the epothilone framework. Furthermore, the new olefin was selectively funtionalized to demonstrate the advantage conferred by this route for the construction of new analogues for SAR studies, in cytoxicity and microtubule affinity screens. Also described is the surprisingly poor in vivo performance of epothilone 490 in xenografts in the light of very promising in vitro data. This disappointing outcome was traced to unfavorable pharmacokinetic features of the drug in murine plasma. By the pharmacokinetic criteria, the prognosis for the effectiveness of 3 in humans is, in principle, much more promising.  相似文献   

8.
The highlights of three macrolide syntheses recently completed in our laboratory are described. In the epothilone B synthesis we developed the "early epoxide approach," which resulted in the first completely stereocontrolled synthesis of this natural product. In the laulimalide synthesis our contribution was the auxiliary controlled ene-macrocyclization and Sharpless' kinetic resolution for achieving a regioselective epoxidation of two pseudo-enantiomorphic allylic alcohol subunits. The tartrolon B synthesis was the first to be completed. In this case, a substrate controlled aldol addition was used to assemble the entire carbon skeleton of the compound.  相似文献   

9.
Konrad Sommer 《Tetrahedron》2009,65(16):3246-7126
The stereocontrolled, asymmetric synthesis of triply deuterium-labeled 7-hydroxy-pre-paraherquamide (27) was accomplished, employing a diastereoselective intramolecular SN2′ cyclization strategy. The deuterium-labeled substrate was interrogated in a precursor incorporation experiment in the paraherquamide-producing organism Penicillium fellutanum. The isolated sample of paraherquamide A revealed incorporation of one of the two geminal deuterons of the CD2-group at C-12 exclusively. The lack of signals for the second deuteron of the CD2-group at C-12 and for the CH2D-group (C-22/C-23) suggests that this substrate suffered an unexpectedly selective catabolic degradation and metabolic re-incorporation of deuterium thus casting doubt on the proposed biosynthetic intermediacy of 27. Consideration of alternative biosynthetic pathways, including oxidation of the indole C-6 position prior to hydroxylation at C-7 or oxidative spiro-contraction of pre-paraherquamide prior to construction of the dioxepin is discussed. The synthesis of 27 also provides for a concise, asymmetric stereocontrolled synthesis of an advanced intermediate that will be potentially useful in the synthesis of paraherquamides E and F.  相似文献   

10.
Previous study showed that some Gram-negative bacteria possess human blood group activity. Among them, Escherichia coli O86 has high blood group B activity and weak blood group A activity. This is due to the cell surface O-antigen structure, which resembles that of human blood group B antigen. In this study, we sequenced the entire E. coli O86 antigen gene cluster and identified all the genes responsible for O-antigen biosynthesis by sequence comparative analysis. The blood group B-like antigen in E. coli O86 O-polysaccharide was synthesized by sequentially employing three glycosyltransferases identified in the gene cluster. More importantly, we identified a new bacterial glycosyltransferase (WbnI) equivalent to human blood group transferase B (GTB). The enzyme substrate specificity and stepwise enzymatic synthesis of blood group B-like antigen revealed that the biosynthetic pathway of B antigen is essentially the same in E. coli O86 as in humans. This new finding provides a model to study the specificity and structure relationship of blood group transferases and supports the hypothesis of anti-blood group antibody production by bacterial stimulation.  相似文献   

11.
Following the biosynthesis of polyketide backbones by polyketide synthases (PKSs), post‐PKS modifications result in a significantly elevated level of structural complexity that renders the chemical synthesis of these natural products challenging. We report herein a total synthesis of the widely used polyketide insecticide spinosyn A by exploiting the prowess of both chemical and enzymatic methods. As more polyketide biosynthetic pathways are characterized, this chemoenzymatic approach is expected to become readily adaptable to streamlining the synthesis of other complex polyketides with more elaborate post‐PKS modifications.  相似文献   

12.
Using a pure Escherichia coli translation system, we tested the intrinsic specificity of the protein biosynthetic machinery by determining the relative yields of peptide synthesis for incorporation of a series of acyl-%@mt;sys@%tRNA%@sx@%GAC%@be@%AsnB%@sxx@%%@mx@% 's with varied backbone structures at the sense codon GUU (Val). The results showed that different amino acids on the same tRNA adaptor give significantly different peptide yields and the potential for cross-talk between the amino acid and tRNA body/anticodon in aa-tRNA decoding by the ribosome. They further support the substrate plasticity of the ribosomal biosynthetic machinery and provide immediate candidates for ribosomally encoded polymer synthesis.  相似文献   

13.
Chemotherapeutic drugs for cancer treatment have been traditionally originated by the isolation of natural products from different environmental niches, by chemical synthesis or by a combination of both approaches thus generating semisynthetic drugs. In the last years, a number of gene clusters from several antitumor biosynthetic pathways, mainly produced by actinomycetes and belonging to the polyketides family, are being characterized. Genetic manipulation of these antitumor biosynthetic pathways will offer in the near future an alternative for the generation of novel antitumor derivatives and thus complementing current methods for obtaining novel anticancer drugs. Novel antitumor derivatives have been produced by targetted gene disruption and heterologous expression of single (or a few) gene(s) in another hosts or by combining genes from different, but structurally related, biosynthetic pathways ("combinatorial biosynthesis"). These strategies take advantage from the "relaxed substrate specificity" that characterize secondary metabolism enzymes.  相似文献   

14.
Flavonoids and stilbenes have attracted much attention as potential targets for nutraceuticals, cosmetics, and pharmaceuticals. We have developed a system for producing "unnatural" flavonoids and stilbenes in Escherichia coli. The artificial biosynthetic pathway included three steps. These included a substrate synthesis step for CoA esters synthesis from carboxylic acids by 4-coumarate:CoA ligase, a polyketide synthesis step for conversion of the CoA esters into flavanones by chalcone synthase and chalcone isomerase, and into stilbenes by stilbene synthase, and a modification step for modification of the flavanones by flavone synthase, flavanone 3beta-hydroxylase and flavonol synthase. Incubation of the recombinant E. coli with exogenously supplied carboxylic acids led to production of 87 polyketides, including 36 unnatural flavonoids and stilbenes. This system is promising for construction of a larger library by employing other polyketide synthases and modification enzymes.  相似文献   

15.
Etoh H  Yasuda M  Akimoto T 《Analytical sciences》2011,27(12):1179-1183
In this paper, we describe a method to enhance the fluorescence signal of mutagen detection using SOS response-induced green fluorescence protein (GFP) in genetically modified Escherichia coli using a multi-layered substrate. To generate E. coli that express SOS response-induced GFP, we constructed a plasmid carrying the RecA promoter located upstream of the GFP gene and used it to transform E. coli BL21. The transformed strain was incubated with mitomycin C (MMC), a typical mutagen, and then immobilized on a multi-layered substrate with Ag and a thin Al(2)O(3) layer on a glass slide. Since the multi-layered substrate technique is an optical technique with potential to enhance the fluorescence of fluorophore placed on top of the substrate, the multi-layered substrate was expected to improve the fluorescence signal of mutagen detection. We obtained an average 14-fold fluorescence enhancement of MMC-induced GFP in the concentration range 1 to 1000 ng/ml. In addition, the lower detection limit of MMC was improved using this technique, and was estimated to be 1 ng/ml because of an enlargement of the difference between the blank and the signal of 1 ng/ml of MMC.  相似文献   

16.
A series of conformationally restrained epothilone analogues with a short bridge between the methyl groups at C6 and C8 was designed to mimic the binding pose assigned to our recently reported EpoA-microtubule binding model. A versatile synthetic route to these bridged epothilone analogues has been successfully devised and implemented. Biological evaluation of the compounds against A2780 human ovarian cancer and PC3 prostate cancer cell lines suggested that the introduction of a bridge between C6-C8 reduced potency by 25-1000 fold in comparison with natural epothilone D. Tubulin assembly measurements indicate these bridged epothilone analogues to be mildly active, but without significant microtubule stabilization capacity. Molecular mechanics and DFT energy evaluations suggest the mild activity of the bridged epo-analogues may be due to internal conformational strain.  相似文献   

17.
Glycopeptide antibiotics (GPAs) are important antibiotics that are highly challenging to synthesise due to their unique and heavily crosslinked structure. Given this, the synthetic production and diversification of this key compound class remains impractical. Furthermore, the possibility of biosynthetic reengineering of GPAs is not yet feasible since the selectivity of the biosynthetic crosslinking enzymes for altered substrates is largely unknown. We show that combining peptide synthesis with enzymatic cyclisation enables the formation of novel examples of GPAs and provides an indication of the utility of these crucial enzymes. By accessing the biosynthetic process in vitro, we identified peptide modifications that are enzymatically tolerated and can also reveal the mechanistic basis for substrate intolerance where present. Using this approach, we next specifically activated modified residues within GPAs for functionalisation at previously inaccessible positions, thereby offering the possibility of late‐stage chemical functionalisation after GPA cyclisation is complete.  相似文献   

18.
The synthesis of norvancomycin (NVan)-capped silver nanoparticles (Ag@NVan) and their notable in vitro antibacterial activities against E. coli, a Gram-negative bacterial strain (GNB), are reported here. Mercaptoacetic acid-stabilized spherical silver nanoparticles with a diameter of 16±4 nm are prepared by a simple chemical reaction. The formation process of the silver nanoparticles is investigated by UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). NVan is then grafted to the terminal carboxyl of the mercaptoacetic acid in the presence of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC). The TEM images of single bacteria treated with Ag@NVan show that plenty of Ag@NVan aggregate in the cell wall of E. coli. A possible antibacterial mechanism is proposed that silver nanoparticles may help destroy the stability of the outer membrane of E. coli, which makes NVan easier to bind to the nether part of the peptidoglycan structure. The antibacterial activities of silver nanoparticles on their own, together with the rigid polyvalent interaction between Ag@NVan and cell wall, enables Ag@NVan to be an effective inhibitor of GNB. This kind of bionanocomposites might be used as novel bactericidal materials and we also provide an effective synthesis method for preparing functional bioconjugated nanoparticles here.  相似文献   

19.
The carbohydrate chains decorating cell membranes and secreted proteins participate in a range of important biological processes. However, their ultimate significance and possible therapeutic potential have not been fully explored due to the lack of economical methods for their production. This study is an example of the use of a genetically engineered bacterial strain in the preparation of diverse oligosaccharides. Based on an ex vivo biosynthetic pathway, an artificial gene cluster was constructed by linking the genes of five associated enzymes on a plasmid vector. This plasmid was inserted into the E. coli NM522 strain to form globotriose-producing cells ('superbug' pLDR20-CKTUF). The specific strain was conveniently applied to the synthesis of globotriose trisaccharide and its derivatives, as potential neutralizers for Shiga toxin. This work demonstrates a novel and economical method for generating ligand diversity for carbohydrate drug development.  相似文献   

20.
Studies towards the synthesis of epothilone A via organoboranes have been described. A modified procedure for the large-scale preparation of B-gamma,gamma-dimethylallyldiisopinocampheylborane from prenyl alcohol has been developed. This reagent, upon reaction with various aldehydes, provides the corresponding alpha,alpha-dimethylhomoallylic alcohols in high enantioselectivities. The application of this reagent for the synthesis of the C1-C6 subunit of epothilone has been demonstrated. Alternatively, inter- and intramolecular asymmetric reduction protocols have also been utilized for the synthesis of the C1-C6 subunit of epothilone A. The synthesis of the C7-C21 fragment of epothilone A involving asymmetric alkoxyallyl- and crotylboration using alpha-pinene-derived reagents has also been described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号