首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ultraviolet radiation (UVR) on inhibition of photosynthesis was studied in two species of marine picoplankton with different carbon concentration mechanisms: Nannochloropsis gaditana Lubian possesses a bicarbonate uptake system and Nannochloris atomus Butcher a CO2 active transport system. Biological weighting functions (BWFs) for inhibition of photosynthesis by UVR and photosynthesis vs irradiance (PI) curves for photosynthetically active radiation (PAR) were estimated for both species grown with an enriched CO2 supply (high dissolved inorganic carbon [DIC]: 1% CO2 in air) and in atmospheric CO2 levels (low DIC: 0.03% CO2). The response to UVR and PAR exposures was different in each species depending on the DIC treatment. Under PAR exposure, rates of maximum photosynthesis were similar between treatments in N. gaditana. However, the cultures growing in high DIC had lower sensitivity to UVR than the low DIC cultures. In contrast, N. atomus had higher rates of photosynthesis under PAR exposure with high DIC, but the BWFs were not significantly different between treatments. The results suggest that one or more processes in N. gaditana associated with HCO3- transport are target(s) for UV photodamage because there was relatively less UV inhibition of the high DIC-grown cultures in which inorganic carbon fixation is supplied by passive CO2 diffusion. Time courses of photochemical efficiency in PAR, during UV exposure and during subsequent recovery in PAR, were determined using a pulse amplitude modulated fluorometer. The results were consistent with the BWFs. In all time courses, a steady state was obtained after an initial decrease, consistent with a dynamic balance between damage and repair as found for other phytoplankton. However, the relationship of response to exposure showed a steep decline in activity that is consistent with a constant rate of repair. A novel feature of a model developed from a constant repair rate is an explicit threshold for photosynthetic response to UV.  相似文献   

2.
Solar UVB radiation (280-320 nm) is known to have detrimental effects on marine phytoplankton. Associated with the seasonal ozone hole in Antarctica, stratospheric ozone depletion occasionally influences the sub-Antarctic (Beagle Channel, Argentina) region, enhancing levels of UVB. The primary objective of this work was to study the effects of several (i.e. 6-10) days of exposure to UVB on the taxonomic composition and photosynthetic inhibition of local phytoplankton communities. For different light treatments, fixed-depth incubations placed in an outdoors water tank were compared with incubations in 1900 L mesocosms, where vertical mixing was present. Phytoplankton growth was inhibited by UV radiation (UVR) in fixed-depth experiments but not in the mixed mesocosms. Under fixed and mixed conditions alike, photosynthesis was significantly inhibited by UVB at the beginning of the experiment but no longer after several days of exposure, suggesting that cells had acclimated to radiation conditions. There was a change in species composition in response to UVR exposure in both experiments, which likely explained acclimation. In the community exposed to fixed conditions this change was from a phytoflagellate-dominated assemblage to a community with high relative abundance of diatoms after 6 days of exposure. UVA was responsible for most of the observed growth inhibition; however, the reduction in photosynthesis was produced by UVB. The reasons behind this variability in responses to UVR are associated with species-specific sensitivity and acclimation, and the previous light history of cells. In the community exposed in mesocosms, an assemblage codominated by phytoflagellates and diatoms was observed at the beginning of the experiments. After 10 days of exposure, green algae (Eutreptiella sp.) had increased, and phytoflagellates were the dominant group. The synthesis of mycosporine-like amino acids (MAAs), antioxidant enzymes and photosynthetic antenna pigments, in relation to repair and protection processes, may explain the reduced inhibition of both growth and photosynthesis that was observed in the phytoplankton community after several days of exposure. For environments such as the Beagle Channel seasonally exposed to the ozone hole, the results obtained from the fixed-depth experiments show that species can cope with UVR by means of MAA synthesis, while mixing would primarily promote a change in species composition and defense strategies.  相似文献   

3.
We investigated the effects of salinity and artificial UV radiation on the accumulation of mycosporine‐like amino acids (MAAs) in sexual and parthenogenetic Artemia from Lake Urmia. The nauplii hatched from the cysts were cultured until adulthood under two salinities (150 and 250 g L?1) and two light treatments (PAR and PAR+UVR) in the laboratory. Finally, the Artemia were analyzed for their concentration of MAAs. In most of the cases, the higher salinity level applied was found to increase the MAA concentrations in both Artemia populations significantly. The acquisition efficiency of MAAs in both Artemia populations increased under exposure to UVR‐supplemented photosynthetically active radiation (PAR) compared to those raised under PAR, except for Porphyra‐334. It was observed that combination of UV radiation and elevated salinity significantly increased the bioaccumulation of MAAs. Thus, the presence of these compounds in these populations of Artemia may increase their adaptability for living in high‐UV and high‐salinity conditions prevailing in Lake Urmia. Higher concentrations of MAAs in the parthenogenetic population of Artemia could be probably attributed to its mono sex nature and higher adaptation capacities to extreme environmental conditions.  相似文献   

4.
From June to September 2005, we carried out experiments to determine the ultraviolet radiation (UVR) -induced photoinhibition of summer phytoplankton assemblages from a coastal site of the South China Sea. Variability in taxonomic composition was determined throughout the summer, with a peak chlorophyll a (chl a approximately 20 microg chl a L(-1)) dominated by the diatom Skeletonema costatum that was detected early in the study period; the rest of the time samples were characterized by monads and flagellates, with low chl a values (1-5 chl a microg L(-1)). Surface water samples were placed in quartz tubes, inoculated with radiocarbon and exposed to solar radiation for 2-3 h to determine photosynthetic rates under three quality radiation treatments (i.e. PAB, 280-700 nm; PA, 320-700 nm and P, 400-700 nm) using different filters and under seven levels of ambient irradiance using neutral density screens (P vs E curves). UVR inhibition of samples exposed to maximum irradiance (i.e. at the surface) varied from -12.2% to 50%, while the daytime-integrated UVR-related photoinhibition in surface seawater varied from -62% to 7%. The effects of UVR on the photosynthetic parameters P(B)(max) and E(k) were also variable, but UV-B accounted for most of the observed variability. During sunny days, photosynthesis of microplankton (>20 microm) and piconanoplankton (<20 microm) were significantly inhibited by UVR (mostly by UV-B). However, during cloudy days, while piconanoplankton cells were still inhibited by UVR, microplankton cells used UVR (mostly UV-A) as the source of energy for photosynthesis, resulting in higher carbon fixation in samples exposed to UVR than the ones exposed only to photosynthetically active radiation (PAR). Our results indicate that size structure and cloudiness clearly condition the overall impact of UVR on phytoplankton photosynthesis in this tropical site of South China. In addition, model predictions for this area considering only PAR for primary production might have underestimated carbon fixation due to UVR contribution.  相似文献   

5.
This study demonstrates that UV radiation (UVR) reduces the photoprotective capacity of the diatom Phaeodactylum tricornutum by affecting xanthophyll cycle (XC) activity. The short‐term reduction of photosystem II (PSII) maximum efficiency of charge separation (Fv/Fm) in cells exposed to UVR could be explained mainly by a reduced photoprotective capacity under this condition. Phaeodactylum tricornutum cells acclimated to two different photosynthetically active radiation (PAR) intensities, high light (HL, 200 μmol quanta m?2 s?1) and low light (LL, 50 μmol quanta m?2 s?1), were exposed to saturating irradiance (1100 μmol quanta m?2 s?1) in the presence (PAR + UVR) and absence of UVR (PAR). HL cells exhibited a greater reduction in Fv/Fm in PAR + UVR when compared with the PAR treatment that was related to a reduction in the de‐epoxidation of XC pigments. In contrast, in LL cells, UVR did not considerably affect XC de‐epoxidation even though the reduction in Fv/Fm was greater than in HL cells. The negative effect of UVR on photoprotection was more pronounced in HL cells because they synthesized more XC pigments than LL cells. This was confirmed when XC activity was blocked with dithiothreitol and when PSII repair was inhibited with chloramphenicol (CAP). The differential reduction of Fv/Fm between PAR + UVR and PAR treatments disappeared when XC was blocked in HL cells. A higher reduction and an incomplete recovery of Fv/Fm were observed in cells incubated with CAP in the presence of UVR. Such responses confirm that UVR had a negative effect on photoprotective mechanisms causing an enhancement of damage by PAR, especially in HL‐acclimated cells in which heat dissipation is important for PSII regulation.  相似文献   

6.
Photoacclimation properties were investigated in two marine microalgae exposed to four ambient irradiance conditions: static photosynthetically active radiation (PAR: 400–700 nm), static PAR + UVR (280–700 nm), dynamic PAR and dynamic PAR + UVR. High light acclimated cultures of Thalassiosira weissflogii and Dunaliella tertiolecta were exposed outdoors for a maximum of 7 days. Dynamic irradiance was established by computer controlled vertical movement of 2 L bottles in a water filled basin. Immediate (<24 h), short-term (1–3 days) and long-term (4–7 days) photoacclimation was followed for antioxidants (superoxide dismutase, ascorbate peroxidase and glutathione cycling), growth and pigment pools. Changes in UVR sensitivity during photoacclimation were monitored by measuring UVR-induced inhibition of carbon assimilation under standardized UV conditions using an indoor solar simulator. Both species showed immediate antioxidant responses due to their transfer to the outdoor conditions. Furthermore, upon outdoor exposure, carbon assimilation and growth rates were reduced in both species compared with initial conditions; however, these effects were most pronounced in D. tertiolecta . Outdoor UV exposure did not alter antioxidant levels when compared with PAR-only controls in both species. In contrast, growth was significantly affected in the static UVR cultures, concurrent with significantly enhanced UVR resistance. We conclude that antioxidants play a minor role in the reinforcement of natural UVR resistance in T. weissflogii and D. tertiolecta .  相似文献   

7.
This study reports 5 years of (1998-2003) data on continuous solar-irradiation measurements from a scanning spectroradiometer (SUV-100) in Valdivia, Chile (39 degrees S), accompanied by evaluation of the impact of ultraviolet radiation (UVR) on marine macroalgae of this site. UVR conditions showed a strong seasonal variation, which was less pronounced toward longer wavelengths. Daily maximum dose rates (clear days) averaged in winter-summer: UV-B(290-315 nm) 0.30-2.1, UV-B(290-320 nm) 0.70-3.7, UV-A(315-400 nm) 20.6-62.1, UV-A(320-400 nm) 20.2-60.5 W m(-2), and photosynthetically active radiation (PAR) 969-2423 micromol m(-2) s(-1). The corresponding daily doses (all the days) ranged: UV-B(290-315 nm) 2.6-40.7, UV-B(290-320 nm) 6.7-78.5, UV-A(315-400 nm) 228-1539, UV-A(320-400 nm) 224-1501, and PAR 2008-13308 kJ m(-2) d(-1). Taking into consideration action spectra of a biological interest, the risk of UV exposure could be up to 37 times higher in summer than in winter. The photosynthetic activity (as maximum quantum yield of chlorophyll fluorescence, F(v)/F(m)) of the brown alga Lessonia nigrescens from the infralittoral zone was markedly more sensitive to UVR than of the green alga Enteromorpha intestinalis from the upper midlittoral, and the UV-B wave band increased markedly photoinhibition. In L. nigrescens, maximal photoinhibition (40%) took place at weighted (the action spectrum for photoinhibition of photosynthesis) UVR doses of 800 kJ m(-2), irrespective of the season (corresponding midsummer daily dose in Valdivia is 480 kJ m(-2)). In winter, when this alga was at its most sensitive, the weighted UV dose causing 35-40% photoinhibition was around 200 kJ m(-2). In E. intestinalis, weighted doses of 800 kJ m(-2) resulted in low photoinhibition (<10 %) and no clear seasonal patterns could be inferred. These results confirm that midday summer levels of UV-B and their daily doses in southern Chile are high enough to produce stress to intertidal macroalgae.  相似文献   

8.
Radiation damage can inter alia result in lipid peroxidation of macroalgal cell membranes. To prevent photo-oxidation within the cells, photoprotective substances such as phlorotannins are synthesized. In the present study, changes in total fatty acids (FA), FA composition and intra/extracellular phlorotannin contents were determined by gas chromatography and the Folin-Ciocalteu method to investigate the photoprotective potential of phlorotannins to prevent lipid peroxidation. Alaria esculenta juveniles (Phaeophyceae) were exposed over 20 days to high/low photosynthetically active radiation (PAR) in combination with UV radiation (UVR) in the treatments: PAB (low/high PAR + UV-B + UV-A), PA (low/high PAR + UV-A) or low/high PAR only. While extracellular phlorotannins increased after 10 days, intracellular phlorotannins increased with exposure time and PA and decreased under PAB. Interactive effects of time:radiation wavebands, time:PAR dose as well as radiation wavebands:PAR dose were observed. Low FA contents were detected in the PA and PAB treatments; interactive effects were observed between time:high PAR and PAB:high PAR. Total FA contents were correlated to extra/intracellular phlorotannin contents. Our results suggest that phlorotannins might play a role in intra/extracellular protection by absorption and oxidation processes. Changes in FA content/composition upon UVR and high PAR might be considered as an adaptive mechanism of the A. esculenta juveniles subjected to variations in solar irradiance.  相似文献   

9.
Accurate determination of the diurnal variability and daily insolation of surface (0+) and subsurface (0?) irradiance are essential to estimate several physical, chemical and biological processes occurring at the surface layer of marine environments. Natural downwelling PAR and spectral UVR were examined on eight occasions at 0+ and 0? to refine empirical models, particularly in the UVR spectrum. The diurnal variability in UVR and PAR were wavelength dependent and were modeled by a sinusoidal equation. The best fit for PAR at 0+ and 0? was the sinusoid power of = 2 and = 2.5, respectively. In the UVR spectrum, sinusoids increased as wavelengths decreased ranging from = 2–5. Higher n values in the UV‐B spectrum suggest sharper increase/decrease near sunrise and sunset hours, ultimately reducing the final value of daily insolation at specified wavelengths. Calculated daily insolation of UV‐B/(UV‐A + PAR) ratio suggests that photoinhibition from exposure to UV‐B occurs within a shorter biologically effective day length than PAR, and is high during summer and low during winter. These results suggest that biogeochemical calculations based on diurnal models of irradiance measurements would benefit from accurate solar noon references and wavelength specificity, particularly in the UVR spectrum.  相似文献   

10.
Phytoplanktonic species acclimated to high light are known to show less photoinhibition. However, little has been documented on how cells grown under indoor conditions for decades without exposure to UV radiation (UVR, 280-400 nm) would respond differently to solar UVR compared to those in situ grown under natural solar radiation. Here, we have shown the comparative photosynthetic and growth responses to solar UVR in an indoor- (IS) and a naturally grown (WS) Skeletonema costatum type. In short-term experiment (<1 day), Phi(PSII) and photosynthetic carbon fixation rate were more inhibited by UVR in the IS than in the WS cells. The rate of UVR-induced damages of PSII was faster and their repair was significantly slower in IS than in WS. Even under changing solar radiation simulated for vertical mixing, solar UVR-induced higher inhibition of photosynthetic rate in IS than in WS cells. During long-term (10 days) exposures to solar radiation, the specific growth rate was much lower in IS than WS at the beginning, then increased 3 days later to reach an equivalent level as that of WS. UVR-induced inhibition of photosynthetic carbon fixation in the IS was identical with that of WS at the end of the long-term exposure. The photosynthetic acclimation was not accompanied with increased contents of UV-absorbing compounds, indicating that repair processes for UVR-induced damages must have been accelerated or upgraded.  相似文献   

11.
A 30-min exposure to UV-B radiation (1.1 Wm(-2), unweighted) from a xenon arc lamp caused pronounced inhibition (33-78%) of net photosynthetic oxygen production in three species of microalgae, Phaeodactylum tricornutum Bohlin, Dunaliella tertiolecta Butcher and Wolozynskia sp., however, no statistical differences (t-test, alpha=0.05) in dark-respiration rates were found between the control group and the UV-treated group, for any of the species tested. These results indicate: (i) that the respiratory processes responsible for oxygen consumption do not sustain any appreciable impairment registered in the first half-hour after ultraviolet radiation (UVR) exposure; and (ii) any change in respiration that may occur in response to increased repair demands is not detected in this period. Dark-respiration rates were observed to be significantly higher in all species tested (17-29%; t-test, alpha=0.05) following illumination with photosynthetically active radiation, compared to dark-respiration before illumination. This increase, interpreted as enhanced post-illumination respiration (EPIR), was observed in all three species. The magnitude of this increase was not affected by prior exposure to UVR.  相似文献   

12.
Cultures of the marine diatoms Phaeodactylum tricornutum and Chaetoceros muelleri were grown in f/2 medium supplied with either nitrate (N-Nt), ammonium (N-Am) or urea (N-Ur) as the nitrogen (N) source at the same final N concentration (0.88 mM). Exponential growth phase cultures of the two diatoms were exposed to four different light regimes for 2 days: (UVAR) PAR (60 micromol quanta m-2 s-1) plus 8.22 W m-2 (unweighted) UVAR; (high UVBR) PAR (60 micromol quanta m-2 s-1) plus 1.04 W m-2 (unweighted) UVBR plus 13.73 W m-2 (unweighted) UVAR; (low UVBR) PAR (60 micromol quanta m-2 s-1) plus 0.19 W m-2 (unweighted) UVBR plus 2.76 W m-2 (unweighted) UVAR and (PAR) PAR (60 micromol quanta m-2 s-1) alone (control). No significant effects of N source on the growth rates of the two diatoms were detected. The maximum effective quantum yield of PSII, PhiPSIIe-max, and the initial slope of the light curve, alpha, of P. tricornutum and C. muelleri were all inhibited, whereas Ik was somewhat increased, as a consequence of 2 days of exposure to all the UVR treatments. Multiple factor ANOVA revealed that all the major fatty acids, both in P. tricornutum and C. muelleri, were influenced more strongly by N source than by UVR. The composition of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) in P. tricornutum and C. muelleri exhibited almost the same pattern of variation with N source and UVR. The maximum value of SFA was found in the N-Am treatment, that of MUFA in the N-Nt treatment and for PUFA in the N-Ur treatment irrespective of the UV radiation. On the other hand, the impact of UVR resulted in an increase of PUFA and a reduction of SFA both in P. tricornutum and C. muelleri under all N sources.  相似文献   

13.
The effect of different wavebands of artificial UV (UVB and UVA) and photosynthetically active radiation (PAR) was assessed in two species of the genus Ulva, U. olivascens and U. rotundata, from southern Spain in order to test for possible differences in acclimation of photosynthesis. Both species share similar morphology but are subject to different light environments: U. rotundata is an estuarine alga, inhabiting subtidal locations, while U. olivascens is an intertidal, sun-adapted organism. Algae were exposed to three different UV conditions, PAR+UVA+UVB, PAR+UVA and PAR for 7 d. Short-term exposure (6 h) was also carried out, using two PAR levels, 150 and 700 micromolm(-2)s(-1). Pigment contents and photosynthesis vs. irradiance curves from oxygen evolution were used to contrast sun- and shade adaptation between these species. O2-based net photosynthesis (Pmax) and PAM-chlorophyll fluorescence (optimal quantum yield, Fv/Fm) were used as parameters to evaluate photoinhibition of photosynthesis in the experiments. The results underline different photobiological characteristics among species: the subtidal U. rotundata had higher contents of pigments (Chl a, Chl b and carotenoids) than the sun-adapted U. olivascens, which resulted in higher thallus absorptance and P-I parameters characterized by higher photosynthetic efficiency at limiting irradiances (alpha) and lower saturating points for photosynthesis (Ek). After 7 d exposure, photoinhibition of Fv/Fm was close to 40-45% in both species. Differences between UV treatments were seen in U. rotundata after 5 d and after 7 d in U. olivascens, in which PAR+UVA impaired strongly photosynthesis (80%). Such patterns were correlated with a progressive decrease in pigment contents, specially chlorophylls. In short-term (6 h) exposures, combinations of UVA+UVB and high PAR level resulted in high rates of photoinhibition of chlorophyll fluorescence (68-92%) in U. rotundata, whereas in U. olivascens photoinhibition ranged between 42% and 53%. Photoinhibition under low PAR combined to UV radiation was lower than observed under high PAR. Net O2-Pmax revealed similar response among the species, with maximal photoinhibition rates close to 60% in algae incubated under high PAR+UVA+UVB. In the case of UV exposure in combination with low PAR, the highest photoinhibition rates were measured in U. rotundata.  相似文献   

14.
Diatoms have relatively high biomass in mid- to high-latitude oceans, which is also the most sensitive region to climate change. Photoautotrophs are thus predicted to become exposed to both higher temperatures and increased solar irradiance. In this study, we examined the consequences of such changes for the growth and photo-physiology of two diatoms by mimicking the scenarios that correspond to present day and that predicted for the end of this century. Elevated light induced higher rates of damage to photosystem II (PSII) that significantly reduced photochemical yields of both diatoms. Treatments including UV radiation induced ~ 50% inhibition of PSII under present PAR levels. Generally, warming alleviated UVR inhibition, resulting in higher photochemical yields, and faster recovery during dim light exposure. Therefore, concurrent increase of irradiance and temperature mitigated UV inhibition of PSII by 8–15%. The growth was stimulated by warming under PAR treatment, while less stimulation, or even decreased growth rates were found under the PAR + UVR treatment. Results suggest that ocean warming could fully offset the inhibition of high light on PSII. However, under the latter higher UVR stress scenario, the energetic expenditure required by the diatoms to repair damage could lead to their lower overall growth in future oceans.  相似文献   

15.
The effect of ultraviolet (UV) radiation and copper (Cu) on apical segments of Pterocladiella capillacea was examined under two different conditions of radiation, PAR (control) and PAR+UVA+UVB (PAR+UVAB), and three copper concentrations, ranging from 0 (control) to 0.62, 1.25 and 2.50 μm . Algae were exposed in vitro to photosynthetically active radiation (PAR) at 70 μmol photons m?2 s?1, PAR + UVB at 0.35 W m?2 and PAR +UVA at 0.70 W m?2 during a 12‐h photocycle for 3 h each day for 7 days. The effects of radiation and copper on growth rates, content of photosynthetic pigments and photosynthetic performance were analyzed. In addition, samples were processed for light and transmission electron microscopy. The content of photosynthetic pigments decreased after exposure to radiation and Cu. Compared with PAR radiation and copper treatments modified the kinetics patterns of the photosynthesis/irradiance curve. The treatments also caused changes in the ultrastructure of cortical and subcortical cells, including increased cell wall thickness and accumulation of plastoglobuli, as well as changes in the organization of chloroplasts. The results indicate that the synergistic interaction between UV radiation and Cu in P. capillacea, led to the failure of protective mechanisms and causing more drastic changes and cellular imbalances.  相似文献   

16.
Microalgae are capable of acclimating to changes in light and ultraviolet radiation (UVR, 280–400 nm). However, little is known about how the ecologically important coccolithophore Emiliania huxleyi responds to UVR when acclimated to different light regimes. Here, we grew E. huxleyi under indoor constant light or fluctuating sunlight with or without UVR, and investigated its growth, photosynthetic performance and pigmentation. Under the indoor constant light regime, the specific growth rate (μ) was highest, while fluctuating outdoor solar radiation significantly decreased the growth rate. Addition of UVR further decreased the growth rate. The repair rate of photosystem II (PSII), as reflected in changes in PSII quantum yield, showed an inverse correlation with growth rate. Cells grown under the indoor constant light regime exhibited the lowest repair rate, while cells from the outdoor fluctuating light regimes significantly increased their repair rate. Addition of UVR increased both the repair rate and intracellular UV‐absorbing compounds. This increased repair capability, at the cost of decreased growth rate, persisted after the cells were transferred back to the indoor again, suggesting an enhanced allocation of energy and resources for repair of photosynthetic machinery damage by solar UVR which persisted for a period after transfer from solar UVR.  相似文献   

17.
Solar UV radiation (280-400 nm) may affect morphology of cyanobacteria, however, little has been evidenced on this aspect while their physiological responses were examined. We investigated the impacts of solar PAR and UVR on the growth, photosynthetic performance and morphology of the cyanobacterium Anabaena sp. PCC7120 while it was grown under three different solar radiation treatments: exposures to (a) constant low PAR (photosynthetic active radiation, 400-700 nm), (b) natural levels of solar radiation with and (c) without UV radiation (290-400 nm). When the cells were exposed to solar PAR or PAR+UVR, the photochemical efficiency was reduced by about 40% and 90%, respectively, on day one and recovered faster under the treatment without UVR over the following days. Solar UVR inhibited the growth up to 40%, reduced trichome length by up to 49% and depressed the differentiation of heterocysts. Negligible concentrations of UV-absorbing compounds were found even in the presence of UVR. During the first 2 d of exposure to natural levels of PAR, carotenoid concentrations increased but no prolonged increase was evident. Heterocyst formation was enhanced under elevated PAR levels that stimulated quantum yield and growth after an initial inhibition. Higher concentrations of carotenoids and a twofold increase in the carotenoid to chlorophyll a ratio provided protection from the high levels of solar PAR. Under radiation treatments with UVR the relatively greater decrease in chlorophyll a concentrations compared with the increase in carotenoids was responsible for the higher carotenoid: chlorophyll a ratio. Heterocyst formation was disrupted in the presence of solar UVR. However, the longer term impact of heterocyst disruption to the survival of Anabaena sp. requires further study.  相似文献   

18.
Ultraviolet radiation (UVR) is hazardous to patients with photosensitive skin disorders, such as lupus erythematosus, xeroderma pigmentosum and skin cancer. As such, these patients are advised to minimize their exposure to UVR. Classically, this is accomplished through careful avoidance of sun exposure and artificial tanning booths. Indoor light bulbs, however, are generally not considered to pose significant UVR hazard. We sought to test this notion by measuring the UV emissions of 19 different compact fluorescent light bulbs. The ability to induce skin damage was assessed with the CIE erythema action spectrum, ANSI S(λ) generalized UV hazard spectrum and the CIE photocarcinogenesis action spectrum. The results indicate that there is a great deal of variation amongst different bulbs, even within the same class. Although the irradiance of any given bulb is low, the possible daily exposure time is rather lengthy. This results in potential daily UVR doses ranging from 0.1 to 625 mJ cm−2, including a daily UVB (290–320 nm) dose of 0.01 to 15 mJ cm−2. Because patients are exposed continually over long time frames, this could lead to significant cumulative damage. It would therefore be prudent for patients to use bulbs with the lowest UV irradiance.  相似文献   

19.
To assess the relative importance of long‐ and short‐term cellular defense mechanisms in seasonally UV‐R‐acclimated Actinia tenebrosa (Anthozoa, Actiniidae), individuals were exposed to summer doses of PAR, UV‐A, UV‐B and enhanced UV‐B (20%) for a period of 4 days. Mycosporine‐like amino acids (MAAs) and cyclobutane pyrimidine dimer (CPD) concentrations were quantified, while oxidative damage to lipids and proteins, and the activities or levels of the antioxidant enzymes SOD, CAT, GR, GPOX and total glutathione were determined. Our results show that summer UV‐R‐acclimated individuals had a higher UV‐R tolerance, with no significant increases in CPDs levels, than winter‐acclimated sea anemones possibly due to higher MAA concentrations. Summer‐acclimated individuals showed increased lipid and protein oxidation and GPOX activity only when they were exposed to UV‐B at 20% above ambient UV‐R levels. In contrast, winter‐acclimated sea anemones showed elevated levels of oxidative damage, GPOX and SOD activities after exposure to UV‐A or UV‐B at ambient and elevated levels. Thus, this study indicates that long‐term UV‐R acclimation mechanisms such as the accumulation of MAAs could be more important than short‐term increases in antioxidant defenses with respect to reducing indirect UV‐R damage in intertidal sea anemones.  相似文献   

20.
In order to assess the short- and long-term impacts of UV radiation (UVR, 280-400nm) on the red tide alga, Heterosigma akashiwo, we exposed the cells to three different solar radiation treatments (PAB: 280-700nm, PA: 320-700nm, P: 400-700nm) under both solar and artificial radiation. A significant decrease in the effective quantum yield (Y) during high irradiance periods (i.e., local noon) was observed, but the cells partially recovered during the evening hours. Exposure to high irradiances for 15, 30, and 60min under a solar simulator followed by the recovery (8h) under dark, 9 and 100micromolphotonsm(-2)s(-1) of PAR, highlighted the importance of the irradiance level during the recovery period. Regardless the radiation treatments, the highest recovery (both in rate and total Y) was found at a PAR irradiance of 9micromolphotonsm(-2)s(-1), while the lowest was observed at 100micromolphotonsm(-2)s(-1). In all experiments, PAR was responsible for most of the observed inhibition; nevertheless, the cells exposed only to PAR had the highest recovery in any condition, as compared to the other radiation treatments. In long-term experiments (10 days) using semi-continuous cultures, there was a significant increase of UV-absorbing compounds (UV(abc)) per cell from 1.2 to >4x10(-6)microgUV(abc)cell(-1) during the first 3-5 days of exposure to solar radiation. The highest concentration of UV(abc) was found in samples exposed in the PAB as compared to PA and P treatments. Growth rates (mu) mimic the behavior of UV-absorbing compounds, and during the first 5 days mu increased from <0.2 to ca. 0.8, and stayed relatively constant at this value during the rest of the experiment. The inhibition of the Y decreased with increasing acclimation of cells. All our data indicates that H. akashiwo is a sensitive species, but was able acclimate relatively fast (3-5 days) synthesizing UV-absorbing compounds and thus reducing any impact either on photosystem II or on growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号