首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
铈基复合氧化物载体对钯催化剂三效催化性质的影响   总被引:1,自引:0,他引:1  
采用共沉淀法制备了CeO2,Ce0.6Zr0.4O2和Ce0.6Zr0.3Co0.1Ox载体材料,采用沉积沉淀法制备了Pd/CeO2,Pd/Ce0.6Zr0.4O2和Pd/Ce0.6Zr0.3Co0.1O2-x催化剂。采用X射线衍射、氮气吸脱附、透射电子显微镜和氢气程序升温还原技术对三种催化剂的物化性质进行了表征,研究了其三效催化性质和热稳定性。结果表明:沉积沉淀法能制备出较小粒径且均匀分散的钯催化剂。掺杂钴元素(Co)可以改善载体及催化剂的氧化还原性能,提高催化剂的三效催化活性,并拓宽催化剂的三效工作窗口。Pd/Ce0.6Zr0.3Co0.1O2-x在水热老化后表现出良好的催化活性和优异的氧化还原性能。  相似文献   

2.
采用浸渍法制备了不同载体(Ce0.6Zr0.4O2,CeO2和ZrO2)负载的Pt基水煤气变换反应(WGSR)催化剂, 并对其进行了活性评价. 利用X射线衍射(XRD), 程序升温还原(TPR)和原位电导等技术对样品进行了表征. 结果表明, Ce0.6Zr0.4O2固溶体具有比CeO2更高的氧转移能力, 因此促进了Pt/Ce0.6Zr0.4O2催化剂的WGSR活性.  相似文献   

3.
采用柠檬酸溶胶鄄凝胶法制备CeO2基固溶体催化剂(Ce0.7Zr0.3O2-δ、Ce0.7Pr0.3O2-δ和Ce0.7Gd0.3O2-δ), 并考察了固溶体和三种常用载体(TiO2、SiO2和Al2O3)及其负载KNO3后的催化碳黑燃烧活性. 结果表明, CeO2基固溶体催化剂具有很高的催化燃烧活性, 其活性接近TiO2、SiO2和Al2O3负载30%KNO3催化剂的活性. 因为纳米CeO2基固溶体的形成, 提高了催化剂的抗烧结能力, 使氧更活泼, 从而提高氧化还原性能, 有利于碳颗粒燃烧. 由于CeO2基固溶体本身的高活性, 因此KNO3的添加不能明显提高CeO2基固溶体催化剂(尤其是Ce0.7Zr0.3O2-δ和Ce0.7Pr0.3O2-δ)的催化燃烧活性, 但KNO3能显著提高TiO2, SiO2和Al2O3的催化燃烧活性.  相似文献   

4.
采用氨水共沉淀法制备了一系列铈基复合氧化物(Ce0.9M0.1O2,M=Cu、Cr、Zr、Ti、La),借助XRD、Raman、N2吸附-脱附、ESEM和H2-TPR等手段对复合氧化物的结构进行了表征,并考察了其在HCl催化氧化制Cl2过程中的性能.结果显示:Cu、Cr和Zr掺杂能显著减小复合氧化物晶粒尺寸,提高复合氧化物的比表面积和孔容,并提供更多的低温可还原氧物种.而La和Ti的掺杂可以获得较大的表面氧空位浓度以及增加高温可还原氧物种数目.复合氧化物结构和表面性质的变化显著影响了其HCl催化氧化活性,在430℃下铈基复合氧化物催化剂活性顺序为:Ce0.9Cu0.1O2Ce0.9Cr0.1O2Ce0.9Zr0.1O2Ce0.9Ti0.1O2Ce O2Ce0.9La0.1O2,低温可还原氧物种数目直接与催化剂活性有关.反应动力学测试显示催化剂低温可还原氧物种有利于HCl在催化剂表面的吸附和活化,而催化剂表面的氧空位可以促进氧分子的吸附和活化.  相似文献   

5.
测定了Ce0.6Zr0.35Y0.05O2 和Pr0.6Zr0.35Y0.05O2两种固熔体的晶体结构,氧的储存以及氧化-还原性能. XRD结果表明 Ce0.6Zr0.35Y0.05O2主要以立方的Ce0.75Zr0.25O2结构形式存在,此外还有少量的ZrO1.87. 而Pr0.6Zr0.35Y0.05O2则主要以立方的Pr0.60Zr0.40O2结构形式存在.这两种固熔体粒子都为纳米级,具有多孔和较大表面积的特征.将Y3+掺杂到Ce0.6Zr0.4O2 或Pr0.6Zr0.4O2晶格中,可以提高氧空位, Ce4+或Pr4+浓度. H2(和CO)-O2滴定和TPR-再氧化试验表明在这两种固熔体中分别存在着可逆的Ce4+/Ce3+或Pr4+/Pr3+氧化还原能力.基于试验结果,我们得出以下结论,将Y3+掺杂到Ce0.6Zr0.4O2 或Pr0.6Zr0.4O2晶格中可以(1)提高晶格氧的活动能力,(2)提高Ce4+或Pr4+浓度,(3)提高氧的储存能力和(4)Pr0.6Zr0.35Y0.05O2在Redox性能, 晶格氧的活动能力和氧的储存能力等方面优于Ce0.6Zr0.35Y0.05O2.  相似文献   

6.
固定n(Ce)/n(Zr)比为0.67/0.33,用共沉淀法制得一系列CeO2-ZrO2-Al2O3固溶体.采用这些固溶体作载体,以Fe2O3为活性组分,用浸渍法制备了一系列催化剂.BET结果显示,将适量Ce0.67Zr0.33O2引入到Al2O3载体中有助于催化剂保持较高的比表面积.TPR结果显示,载体中引入适量的Ce0.67Zr0.33O2可以改善催化剂的氧化还原性能.XRD结果表明,Fe2O3在CeO2-ZrO2-Al2O3载体上呈现出良好的分散状况,老化前后催化剂的晶相结构基本无明显变化.特别是当载体中m(Ce0.67Zr0.33O2)∶m(Al2O3)的值为1∶2时,Fe2O3/CeO2-ZrO2-Al2O3催化剂在甲烷催化燃烧中显示出最佳的催化性能和抗高温老化性能.  相似文献   

7.
Ce0.67Zr0.33O2对CH4燃烧催化剂Fe2O3/Al2O3的改性作用   总被引:1,自引:0,他引:1  
固定n(Ce)/n(Zr)比为0.67/0.33, 用共沉淀法制得一系列CeO2-ZrO2-Al2O3固溶体. 采用这些固溶体作载体, 以Fe2O3为活性组分, 用浸渍法制备了一系列催化剂. BET结果显示, 将适量Ce0.67Zr0.33O2引入到Al2O3载体中有助于催化剂保持较高的比表面积. TPR结果显示, 载体中引入适量的Ce0.67Zr0.33O2可以改善催化剂的氧化还原性能. XRD结果表明, Fe2O3在CeO2-ZrO2-Al2O3载体上呈现出良好的分散状况, 老化前后催化剂的晶相结构基本无明显变化. 特别是当载体中m(Ce0.67Zr0.33O2)∶m(Al2O3)的值为1∶2时, Fe2O3/CeO2-ZrO2-Al2O3催化剂在甲烷催化燃烧中显示出最佳的催化性能和抗高温老化性能.  相似文献   

8.
以Ce(NO3)3·6H2O,ZrO(NO3)2·2H2O和Bi(NO3)3·5H2O为原料,氨水为沉淀剂,双氧水为氧化剂,在pH值为9.5~10.5条件下,采用氧化共沉淀法制备了不同比例组成的复合氧化物Ce1-x-yZrxBiyOσ.通过XRD,BET和Raman表征可知,该法制备的样品550 ℃焙烧后均可形成固溶体,当x0.15,y0.2时,高温焙烧后易分相.H2-TPR和CO脉冲测试结果显示Ce0.65Zr0.15Bi0.2Oσ较易被还原,且1050℃焙烧4 h后储氧量仍可达625 μmol·(g cat)-1,这是由于Bi3+取代了Ce0.65Zr0.15Bi0.2Oσ中部分Ce4+和Zr4+形成氧空位,增强了体相晶格氧的移动性,从而使Ce0.65Zr0.15Bi0.2Oσ固溶体中的Ce4+和Bi3+同时被还原.  相似文献   

9.
开发了反胶束模板-原位聚合纳米复合法制备聚苯胺(PANI)/Ce(OH)3-Pr2O3·3H2O/石墨纳米薄片(NanoG)纳米复合材料的方法.膨胀石墨在乙醇水溶液中经超声处理制得石墨纳米薄片,以苯胺的氯仿溶液为油相,稀土金属离子Pr3+、Ce3+水溶液为水相,依靠表面活性剂十六烷基三甲基溴化铵(CTAB)自组装形成的反胶束为模板-制备PANI/Ge(OH)3-Pr2O3·3H2O/NanoG复合材料.利用红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)和 X-射线衍射(XRD)对该复合材料进行了表征和分析,研究了其导电性能和热性能.结果表明,PANI/Ce(OH)3-Pr2O3·3H2O/NanoG复合材料各相分散均匀,稀土纳米粒子在体系中以棒状的形态分布.热重分析表明,该复合材料的热稳定性明显提高;导电性研究说明,石墨纳米薄片的特殊的结构(较大的径厚比)对其在聚合物基体中形成导电网络具有重要作用;PANI/Pr2O3-Ce(OH)3/NanoG纳米复合材料的渗滤阀值低于1.0wt%.  相似文献   

10.
以水热法合成的介孔铈锆固溶体为载体,采用浸渍法制备了Ni/CexZr1-xO2催化剂,使用X射线衍射(XRD)、程序升温还原(TPR)和热重-差示扫描量热分析(TG-DSC)等测试手段对催化剂进行了表征。通过对比以ZrO2,CeO2,Ce0.6Zr0.4O2和Ce0.33Zr0.67O2为载体的Ni基催化剂性能,发现铈锆固溶体独特的氧化还原性质可以提高活性组分的分散度,增强催化剂的抗积炭性能,从而提高催化剂对甲烷二氧化碳重整制合成气的选择性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号