首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The dynamics of exciton spin relaxation in CdSe nanorods of various sizes and shapes are measured by an ultrafast transient polarization grating technique. The measurement of the third-order transient grating (3-TG) signal utilizing linear cross-polarized pump pulses enables us to monitor the history of spin relaxation among the bright exciton states with a total angular momentum of F = +/-1. From the measured exciton spin relaxation dynamics, it is found that the effective mechanism of exciton spin relaxation is sensitive to the size of the nanorod. Most of the measured cross-polarized 3-TG signals show single-exponential spin relaxation dynamics, while biexponential spin relaxation dynamics are observed in the nanorod of the largest diameter. This analysis suggests that a direct exciton spin flip process between the bright exciton states with F = +/-1 is the dominant spin relaxation mechanism in small nanocrystals, and an indirect spin flip via the dark states with F = +/-2 contributes as the size of the nanocrystal increases. This idea is examined by simulations of 3-TG signals with a kinetic model for exciton spin relaxation considering the states in the exciton fine structure. Also, it is revealed that the rate of exciton spin relaxation has a strong correlation with the diameter, d, of the nanorod, scaled by the power law of 1/d4, rather than other shape parameters such as length, volume, or aspect ratio.  相似文献   

2.
Evidence for an interaction between the quantum dot exciton fine structure states F = +/-1 is obtained by measuring the dynamics of transitions among those states, exciton spin relaxation or flipping. An ultrafast transient grating experiment based on a crossed-linear polarization grating is reported. By using the quantum dot selection rules for absorption of circularly polarized light, it is demonstrated that it is possible to detect transitions between nominally degenerate fine structure states, even in a rotationally isotropic system. The results for colloidal CdSe quantum dots reveal a strong size dependence for the exciton spin relaxation rate from one bright exciton state (F = +/-1) to the other in CdSe colloidal quantum dots at 293 K, on a time scale ranging from femtoseconds to picoseconds, depending on the quantum dot size. The results are consistent with an interaction between those states attributed to a long-range contribution to the electron-hole exchange interaction.  相似文献   

3.
Here, we have synthesized rod and flake shaped morphology of porphyrin aggregates from 5, 10, 15, 20-tetra (4-n-octyloxyphenyl) porphyrin (4-opTPP) molecule which are evident from scanning electron microscopy (SEM). The formation of J-type aggregation is evident from steady state and time-resolved fluorescence spectroscopic studies. Ultrafast transient absorption spectroscopic studies reveal that the excited state lifetime is controlled by the morphology and the time constant for S1→S0 relaxation changes from 3.05 ps to 744 ps with changing the shape from rod to flake, respectively. In spite of similar exciton coupling energy in both the aggregates, the flake shaped aggregates undergo a faster exciton relaxation process and the non-radiative relaxation channels are found to depend on the shape of aggregates. The fundamental understanding of morphology controlled ultrafast relaxation processes of aggregated porphyrin is important for designing efficient light harvesting devices.  相似文献   

4.
We present time-resolved transient grating measurements of the vibrational relaxation rates of the C-D stretching vibrations of deuterated haloforms in benzene and acetone. We compare our results with previous measurements of excited C-H stretches in the same solvents to obtain insight into the solvent effect on the vibrational relaxation. In deuterated molecules, there are more low-order-coupled states and the states are closer in energy to the C-D stretch than in the unlabeled isotopologs. Therefore, the relaxation is faster for the deuterated molecules. The relaxation also shows a significant solvent dependence. Bromoform and iodoform form charge-transfer complexes with both benzene and acetone which enhance the relaxation rate. For chloroform, hydrogen bonding to acetone is expected to be a more favorable interaction. Surprisingly, however, the vibrational relaxation of CDCl(3) is slower in acetone than in benzene.  相似文献   

5.
The charge photogeneration and early recombination in MEH-PPV-based charge-transfer complexes (CTCs) and in MEH-PPV/PCBM blend as a reference are studied by ultrafast visible-pump-IR-probe spectroscopy. After excitation of the CTC band, an immediate (<100 fs) electron transfer is observed from the polymer chain to the acceptor with the same yield as in the MEH-PPV/PCBM blend. The forward charge transfer in the CTCs is followed by an efficient (approximately 95%) and fast (<30 ps) geminate recombination. For comparison, the recombination efficiency obtained in the MEH-PPV/PCBM blend does not exceed a mere 50%. Polarization-sensitive experiments demonstrate high (approximately 0.3) values of transient anisotropy for the CTCs polaron band. In contrast, in the MEH-PPV/PCBM blend the dipole moment orientation of the charge-induced transition is less correlated with the polarization of the excitation photon. According to these data, photogeneration and recombination of charges in the CTCs take place locally (i.e., within a single pair of a polymer conjugation segment and an acceptor) while in the MEH-PPV/PCBM blend exciton migration precedes the separation of charges. Results of the ultrafast experiments are supported by photocurrent measurements on the corresponding MEH-PPV/acceptor photodiodes.  相似文献   

6.
采用超声合成方法,以对甲氧基苯酚为起始原料,经醚化、溴甲基化和聚合反应,得到无凝胶、完全可溶、高分子量的聚(2-甲氧基-5-(2′-乙基己氧基)-对亚苯基亚乙烯基)(MEH-PPV),其数均分子量高达9.5×105,分子量分布为2.4.并通过核磁共振氢谱(1H-NMR)和红外光谱进行了结构表征.与常规的机械搅拌反应相比,超声合成方法具有反应时间短、反应温度低、产率高、聚合物分子量较大等特点,特别是这种方法有效抑制了聚合过程中的凝胶化问题,合成的MEH-PPV具有更高的荧光量子效率.  相似文献   

7.
王藜  徐苗  应磊  刘烽  曹镛 《高分子学报》2008,(10):993-997
以PC[70]BM(phenyl C71-butyric acid methyl ester)取代PC[60]BM(phenyl C61-butyric acid methyl ester)作为电子受体材料,以MEH-PPV(poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene])为电子给体材料,制成了本体异质结(bulk heterojunction,BHJ)聚合物太阳能电池.MEH-PPV/PC[70]BM器件在AM1.5G(80 mW/cm2)模拟太阳光的光照条件下得到了3.42%的能量转换效率,短路电流值达到了6.07 mA/cm2,开路电压0.85 V,填充因子为53%.通过紫外可见吸收光谱和外量子效率的研究,发现PC[70]BM作为电子受体,对扩大光谱的吸收范围和增加活性层的吸收系数有明显的作用.同时比较了不同溶剂对该体系器件性能的影响.通过原子力显微镜(AFM)、光暗导I-V曲线等研究,分析了1,2-二氯苯有利于给体相和受体相的微相分离和载流子的传输的原因.  相似文献   

8.
Spectral-luminescent properties of the newly synthesized 2-(3-coumarinyl)-5-(2′-(R-amino)-phenyl)-1,3,4-oxadiazoles has been investigated in solvents of various polarity and hydrogen-bonding ability. It has been found that for all the studied compounds no excited state intramolecular proton transfer occurs despite the presence of coumarinyl fragment - electron acceptor effect of the coumarinyl fragment is not sufficient to increase the excited state acidity of the amino group. It has been found that the absorption spectra of the studied compounds shift to higher energy with increase in solvent polarity, whereas corresponding fluorescence spectra shift to lower energy with solvent polarity increase. It has been suggested that long-wavelength shifts of the fluorescence spectra of the studied compounds with increase in solvent polarity is caused by the solvent relaxation. The observed solvent relaxation effect allow us to propose some of the studied compounds as potential probes to monitor changes in solvent relaxation in low-polar media and as potential probes for rigidochromic effect.  相似文献   

9.
The photoluminescence (PL) dynamics of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) blended in host polymer (polypropylene, PP) matrix as well as that in the neat film has been studied. The concentration of MEH-PPV in the PP blend is designed to be fairly low (0.01 wt %) in order to observe the intrinsic intrachain PL property of MEH-PPV in the solid state. The steady-state 0-0 PL band of the blend sample shows a blue-shift of 0.12 eV with respect to that of the neat film of MEH-PPV. The PL-excitation (PLE) spectra of the blend sample exhibit definite vibronic structure, and hence we can determine the magnitude of the Stokes shift as 0.06 eV. The blend sample shows a single-exponential PL decay at 4 K with a time constant of 850 ps. We emphasize that this single-exponential-type PL decay is an intrinsic property of the intrachain PL species. Time-resolved PL measurements confirm dynamical red-shift of the PL band in the neat film, whereas this trend is not found in the case of the PP blend. These observations indicate that the energy transfer between finite segments, which can cause exciton migration, is much less efficient within the isolated MEH-PPV polymer chain compared to the case of the interchain transfer. The time-resolved measurements further demonstrate that the Stokes shift identified in the blend sample takes place at the early stage within 50 ps following photoexcitation. We attribute this Stokes shift to the rapid increase of the planarity of the MEH-PPV chain caused by the torsion of some constituent phenyl rings following photoexcitation. Finally, based on an argument on the different magnitudes of Stokes shift between the blend sample and the neat film, we conclude that the PL of MEH-PPV in the neat film predominantly occurs at the site of interchain excitations via the interchain migration of excitons.  相似文献   

10.
Optoelectronic properties of a polyphenylenevinylene-based oligomer and its paracylophane-linked dimer are studied using a variety of experimental and theoretical techniques. Despite the symmetrical structure and redshifted absorption of the dimer versus the monomer, an exciton picture is not the most appropriate. Electronic structure calculations establish changes in charge density upon optical excitation and show localized excitations that cannot be accounted for by a simple Frenkel exciton model. Visible frequency pump-probe anisotropy measurements suggest that the dimer should be considered as a three-level system with a fast, approximately 130 fs, internal conversion from the higher to lower energy excited electronic state. Signatures of nuclear relaxation processes are compared for electric field-resolved transient grating and two-dimensional photon echo spectra. These measurements reveal that nuclear relaxation occurs on similar time scales for the monomer and dimer. The connection between the spectral phase of four-wave mixing signals and the time dependent width of a nuclear wave packet is discussed. Semiempirical electronic structure and metropolis Monte Carlo calculations show that the dominant line broadening mechanisms for the monomer and dimer are associated with inter-ring torsional coordinates. Together, the theoretical calculations and electric field-resolved four-wave mixing experiments suggest that while the structure of dimer is more rigid than that of monomer, the difference in their rigidities is not sufficient to slow down excited state relaxation of dimer with respect to the monomer.  相似文献   

11.
聚对苯乙炔 (PPV)及其衍生物是制备聚合物发光二极管的最重要的聚合物之一[1] .这主要是因为它们具有优越的电致发光性能 ,易于合成以及良好的环境稳定性[2 ] .而聚 (2 甲氧基 5 (2′ 乙基 己氧基 ) 对苯乙炔 ) (MEH PPV)由于其可溶性好 ,发光效率和亮度高 ,在电致发光领域广受关注 .现在有许多MEH PPV的多步化学合成方法以及电化学合成方法 .但是 ,这些方法常常产率低 ,成本高且产品不纯 .本文报道一种固 液两相反应一步合成分子量大、溶解性好的MEH PPV的新方法 .1 主要原料对甲氧基苯酚 (纯度≥ 98% ,Aldr…  相似文献   

12.
The photo-physical characteristics of semiconductor polymer are systematically stud-ied through comparing poly (9,9-dioctylfluorene) (PFO) and poly (9,9-dioctylfluorene-co-benzothiadiazole) (F8BT). The quantum chemical calculation shows that the introduction of benzothiadiazole unit facilitates the intrachain charge transfer (ICT) and modulates the electronic transition mechanism of polymer. The transient absorption measurement exhibits that intrachain exciton relaxation is dominant in the decay of excited PFO in a monodis-perse system and intrachain exciton interaction could appear at high excitation intensity. In F8BT solution, the ICT state exists and participates in the relaxation of excited state. The relaxation processes of PFO and F8BT in the condensed phase both accelerate and show obvious exciton-exciton annihilation behavior at high excitation intensity. At the same excitation intensity, the mean lifetime of F8BT is longer than that of PFO, which may be assigned to the excellent delocalization of charge.  相似文献   

13.
The role of pi-stack induced molecular aggregation on solution and solid-state luminescent properties was investigated for the tricyclodecane substituted bulky (p-phenylenevinylene)s (BTCD-60, with 60% bulky group), oligophenylenevinylenes (MEH-OPV and BTCD-OPV)s, and their polymer-oligomer binary blends. The natures of the solvent, concentration, solvent combinations (good or bad), and temperature were employed as stimuli to probe the origin of the molecular aggregates in bulky conducting polymers. Absorption, photoluminescence (PL), and time-resolved fluorescence spectroscopic techniques were employed as tools to trace aggregation in solvents such as toluene, tetrahydrofuran (THF), THF and methanol, or THF and water as well as in the solid state. The absorbance spectra of poly(2-methoxy-5-(2-ethylhexyloxy))-1,4-phenylenevinylene (MEH-PPV) and BTCD-60 indicated that the films obtained from polymers that were dissolved in aromatic solvents such as toluene were found to possess more pi-stacking as compared to that of films obtained from a good solvent such as THF. The solid-state emission spectrum of BTCD-60 was found to show almost a 5-6 times enhancement in PL intensity as compared to that of MEH-PPV. Concentration dependent excitation spectra of the polymers confirmed the presence of aggregated polymer chains in MEH-PPV, which is the main reason for the quenching of luminescence intensity in the polymer. Solvent induced aggregation studies of polymers in THF and methanol mixture further supports the existence of strong aggregation in MEH-PPV as compared to that of bulky BTCD-60. Variable temperature absorption studies confirmed the reversibility of molecular aggregation on heating/cooling cycles, and the extent of aggregation was found more in MEH-PPV chains as compared to that of BTCD-60. MEH-PPV/OPV binary blends were prepared in the entire composition range from 0 to 100% via solution blending techniques. Through selective PL excitation techniques, the effect of oligomer-to-polymer energy transfer and also luminescent enhancement in MEH-PPV via interchain separation were investigated. Both the energy transfer and the interchain separation were found to be more effective on the enhancement of luminescence properties in the BTCD blends as compared to that of MEH blends. Time-resolved fluorescence studies confirmed the existence of two types of species corresponding to the free and aggregated chains in the polymer matrix with lifetimes in the range of 0.5-2.0 ns. In the present investigation, we have successfully shown that the molecular aggregation of the pi-conjugated polymers, oligomers, and their binary blends can be controlled via suitable bulky substitution to tune their emission properties in solution as well as in the solid state.  相似文献   

14.
Controllable self-assembly and properties of nanocomposites based on CdSe/ZnS semiconductor quantum dots (QDs) and tetrapyridylporphyrin molecules (H2P) as well as the dynamics of relaxation processes in these systems were studied for solutions and single nanoobjects in the temperature range of 77–295 K. It was proved that the formation of surface states of different nature is crucial to nonradiative relaxation of exciton excitation in QDs. The efficiency of QD→Н2Р energy transfer was shown to be at most 10–15%. Regularities of photoluminescence (PL) quenching for QDs in nanocomposites in solutions of different polarity correlate with the dependences of PL blinking for single QDs. A scheme was proposed of excited states and main relaxation channels of exciton excitation energy in semiconductor QDs and QD–Н2Р nanocomposites.  相似文献   

15.
Single molecule fluorescence correlation spectroscopy has been used to investigate the photodynamics of isolated single multichromophoric polymer chains of the conjugated polymers MEH-PPV and F8BT on the microsecond to millisecond time scale. The experimental results (and associated kinetic modeling) demonstrate that (i) triplet exciton pairs undergo efficient triplet-triplet annihilation on the <30 micros time scale, (ii) triplet-triplet annihilation is the dominant mechanism for triplet decay at incident excitation powers > or =50 W/cm(2), and (iii) singlet excitons are quenched by triplet excitons with an efficiency on the order of (1)/(2). The high efficiency of this latter process ensures that single molecule fluorescence spectroscopy can be effectively used to indirectly monitor triplet exciton population dynamics in conjugated polymers. Finally, correlation spectroscopy of MEH-PPV molecules in a multilayer device environment reveals that triplet excitons are efficiently quenched by hole polarons.  相似文献   

16.
We report the study of the photoluminescence properties of composite conjugated polymer (MEH-PPV)/fullerene (PCBM) nanoparticles as a function of PCBM doping level. The emission properties of individual nanoparticles were studied by Single Particle Spectroscopy (SPS), and distinct changes in vibronic structure with nanoparticle composition were observed. These changes are found to be due to the presence of domains in the nanoparticles with two distinct types of optical signatures, one with molecular and one with aggregate character, for which the abundance and morphology is found to change with PCBM doping levels. Interestingly, highly delocalized structures with a large extent of exciton migration are formed at low PCBM doping levels, while at high PCBM doping levels the exciton collapses into highly localized structures. Furthermore, at very high doping levels phase separation within the MEH-PPV/PCBM nanoparticles is found, even though the reported nanoparticles are only a few tens of nanometers in diameter.  相似文献   

17.
A procedure for relating CIDEP and relaxation in a Heisenberg spin exchange (HSE) model is presented which considers all the spin states of a radical pair. The method relies on an exact (transient) solution of the radical pair density matrix under realistic assumptions and is illustrated for the simple ·RH spin case. The results are cast in the form of Bloch-type equations and are suitable for describing time-resolved ESR experiments.  相似文献   

18.
The excited‐state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis‐ and trisphthalocyanines) are studied by using steady‐state and femtosecond transient absorption spectral measurements, where the excited‐state energy‐transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis‐Pc). In trisphthalocyanine (tris‐Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre‐associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady‐state spectra also show a face‐to‐face conformation in bis‐Pc, whereas in tris‐Pc, two of the three phthalocyanine branches form a pre‐associated face‐to‐face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure–property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.  相似文献   

19.
The vibrational energy dissipation process of the ground-state azulene in various liquids has been studied by the transient grating spectroscopy. The acoustic signal produced by the temperature rise of the solvent due to the vibrational energy relaxation of azulene was monitored. The temperature rise-time constant of the solvent has been determined both by the fitting of the acoustic signal to a theoretical model equation and by the analysis of the acoustic peak shift. We found that the temperature rise-time constants determined by the transient grating method in various solvents are larger than the vibrational energy relaxation time constants determined by the transient absorption measurement [D. Schwarzer, J. Troe, M. Votsmeier, and M. Zerezke, J. Chem. Phys. 105, 3121 (1996)]. The difference is explained by different energy dissipation pathways from azulene to solvent; vibrational-vibrational (V-V) energy transfer and vibrational-translational (V-T) energy transfer. The contribution of the V-V energy transfer is estimated in various liquid solvents from the difference between the temperature rise time and vibrational energy relaxation time, and the solvent V-T relaxation time.  相似文献   

20.
Measurement of the room temperature Trp triplet state lifetime in proteins by time-resolved phosphorescence can provide valuable information on the structure and dynamics of proteins in solution. Our time-resolved absorption measurements on the long-lived states resulting from electronic excitation of the chromophore demonstrate the presence of more complex behavior than revealed by time-resolved phosphorescence. To provide additional insight into this behavior, a comparative study of time-resolved transient absorption and time-resolved phosphorescence of proteins in solution was carried out. The results show that the time evolution of the long-lived states observed through transient absorption often differs considerably from that observed in time-resolved phosphorescence. In some proteins, the presence of competing reactions complicates the interpretation of the transient absorption measurements (which may affect the phosphorescence yield). A more complete characterization of these processes will likely prove useful in the study of protein structure and dynamics in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号