首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cu-Ni/La2O3热解C2H2制备碳纳米管的研究   总被引:3,自引:0,他引:3  
Nano-sized and well-dispersed Cu-Ni/La2O3 can be obtained by reduction of LaCu0.2Ni0.8O3 with the structure of perovskite. Using Cu-Ni/La2O3 as catalyst and C2H2 as carbon source, carbon nanotubes with a high yield and narrow diameter distribution can be obtained in the reaction temperature range of 650~700℃. Outer diameter of carbon nanotubes rangs from 9nm to 14nm. TG, Raman and XPS analysis indicate that carbon nanotubes prepared by Cu-Ni/La2O3 are relatively higher in graphitic degree.  相似文献   

2.
γ-Fe2O3纳米粉的低热固相制备及其电磁损耗特性(英)   总被引:6,自引:0,他引:6  
The Fe(OH)3 precursor was prepared by solid -state reaction with Fe(NO3)3·9H2O, NaOH and dispersed poly-ethylene glycol at low heating temperature(25 ℃). Synthesis of iron oxide (γ-Fe2O3) nanoparticle was achieved by thermal decomposition of Fe(OH)3·xH2O precursor. The nanoparticle was characterized by TG-DTA, X-ray diffra-ction, TEM etc. The results showed that the nanoparticle was composed of γ-Fe2O3 and was a better absorber for electromagnetic wave within the low frequency band.  相似文献   

3.
碳纳米管负载的Fe2O3催化剂制备   总被引:4,自引:0,他引:4  
Carbon nanotubes were modified by FeSO4-H2O2 system, iron hydroxides were adsorbed on the wall of carbon nanotubes simultaneously. These precursors were treated at 723K for 2 h under hydrogen, nitrogen and air atmosphere to prepare carbon nanotubes supported γ-Fe2O3catalyst, γ-Fe2O3and α-Fe2O3compound catalyst and amorphous Fe2O3catalyst, respectively. This is green method to prepare high Fe2O3loading (≥50 %) catalyst without adding other cation. The different structures Fe2O3catalysts can be synthesized by controlling the condition of thermal treatment to content active phase requirements for different catalytic reactions. The paper presents a new method to prepare carbon nanotubes supported catalysts.  相似文献   

4.
A large specific surface area perovskite-type mixed oxide PbTiO3 supported cupric oxide was synthesized as a catalyst for NO decomposition and characterized by techniques such as XPS, XRD, H2-TPR before and after NO decomposition reactions. The catalytic properties were tested with a fix-bed micro-reactor. The results showed that the PbTiO3 was inactive for the reactions, but 1wt % Cu/PbTiO3 catalyst gave fairly good activities for NO decomposition at temperature as low as 473 K. Copper species were found well-dispersed but weakly interacted with the support before NO decomposition, and the NO decomposition caused significant change in the environment of the copper species, which became Cu(Ⅰ) and most probably incorporated into surface crystal lattice of the nano-sized PbTiO3. In NO reaction, a large amount of oxygen atoms from the decomposition of NO penetrated into the nano-sized PbTiO3 support and caused small expansion of crystal lattice. The transport of oxygen between the copper species and the catalyst support may be helpful to speed up the kinetic regeneration of active metal sites from oxygen occupancy and resulted in good catalytic performance.  相似文献   

5.
草酸盐共沉淀法制备Y1.84La0.16O3纳米粉体   总被引:1,自引:0,他引:1  
唐在峰  丁君  杨秋红  徐军 《无机化学学报》2006,22(10):1871-1873
Nanopowder of Y1.84La0.16O3 was prepared by oxalate co-precipitation method. The powder was characterized by TG-DTA, XRD and TEM. The results show that the precursor is Re2(NO3)2(C2O4)2·2H2O (Re=Y, La), and the Y1.84La0.16O3 nanopowders produced by calcining the precursor at 1 000 ℃ for 4 h are 20~40 nm spherical particles and well dispersed. The powders were with high sintering activity and could be fabricated to transparent ceramic without additive at 1 450~1 550 ℃ in H2 atmosphere for 3 hours. The total transmission of the transparent ceramic could reach 80%.  相似文献   

6.
水热法合成K0.5Bi0.5TiO3纳米陶瓷粉体   总被引:3,自引:0,他引:3  
K0.5Bi0.5TiO3(KBT)nanocrystalline particles were hydrothermally synthesized from Bi(NO3)3·5H2O, TiO2 and KOH. The crystal phase, chemical composition and microstructure were characterized by XRD, XRF, Raman scattering spectroscopy and TEM. The results indicated that the products were pure perovskite structured K0.5Bi0.5TiO3 with chemical stoichiometry and perovskite structure. The TEM observation revealed that the particles possessed a feature of cubic shape and a nano-scale of about 40 nm. The KBT ceramics sintered at 1 040 ℃ from hydrothermal powders show higher density and better electric properties than that prepared by a solid-state reaction method.  相似文献   

7.
Hydrolysis reaction of Fe(NO3)3 at a high temperature in the presence of urea as the homogeneous precipitant was studied. With the prepared ceramic filter balls loaded with α-Fe2O3 after high temperature calcination, the loading of α-Fe2O3 on the porous ceramic filter balls from Fe(NO3)3 solutions of different concentrations and mechanical stability of the loaded α-Fe2O3 were studied. The product was characterized using XRD and SEM. Adsorption experiments were conducted to evaluate the performance of the product in adsorbing NH3-N. It turned out that the specific surface area of the ceramic filter balls loaded with α-Fe2O3 had increased to 36.5387 m2/g from original 4.6127 m2/g. When the concentration of Fe(NO3)3 was 0.40 mol/L, the loading of α-Fe2O3 on the ceramic filter balls accounted for 8.4% of the total mass of the adsorbent and α-Fe2O3 was adsorbed on the filter balls very well. The adsorption isotherm of NH3-N on the ceramic filter ball adsorbent loaded with α-Fe2O3 was of Langmuir type. The saturated adsorption capacity was 3.33 mg/L, and the adsorption constant K was 0.1873. NH3-N was adsorbed by α-Fe2O3 more easily, which was a kind of specific adsorption.  相似文献   

8.
不同稀土改性SO42-/ZrO2催化剂的结构与性能表征   总被引:3,自引:0,他引:3  
Solid superacid catalyst SO42-/ZrO2 was modified by different rare earth compounds and applied to the esterification of acetic acid and n-butanol. The effects of rare earth elements loading on the catalytic properties were studied and the correlation between the structure and properties was investigated by means of XRD, IR, UV, DTA and TG. The results show that the (NH4)2Ce(NO3)6 modification can enhance catalytic activity more and exhibit better stability than the other two compounds La(NO3)3 and Ce(NO3)3. Meanwhile,(NH4)2Ce(NO3)6 modification can restrain the loss of SO42- efficiently. The optimum calcination temperature and molar ratio of Ce(NH)∶Zr for SO42-/ZrO2 catalyst modified by (NH4)2Ce(NO3)6 are 450 ℃ and 2, respectively.  相似文献   

9.
In this work, we studied the catalytic activity of LaMnO3 and (La0.8A0.2)MnO3 (A = Sr, K) perovskite catalysts for oxidation of NO and C10H22 and selective reduction of NO by C10H22. The catalytic performances of these perovskites were compared with that of a 2 wt% Pt/SiO2 catalyst. The La site substitution increased the catalytic properties for NO or C10H22 oxidation compared with the non-substituted LaMnO3 sample. For the most efficient perovskite catalyst, (La0.8Sr0.2)MnO3, the results showed the presence of two temperature domains for NO adsorption: (1) a domain corresponding to weakly adsorbed NO, desorbing at temperatures lower than 270 ℃ and (2) a second domain corresponding to NO adsorbed on the surface as nitrate species, desorbing at temperatures higher than 330 ℃. For the Sr-substituted perovskite, the maximum NO2 yield of 80% was observed in the intermediate temperature domain (around 285 ℃). In the reactant mixture of NO/C10H22/O2/H2O/He, (La0.8Sr0.2)MnO3 perovskite showed better performance than the 2 wt% Pt/SiO2 catalyst: NO2 yields reaching 50% and 36% at 290 and 370 ℃, respectively. This activity improvement was found to be because of atomic scale interactions between the A and B active sites, Sr2+ cation and Mn4+/Mn3+ redox couple. Thus, (La0.8Sr0.2)MnO3 perovskite could be an alternative free noble metal catalyst for exhaust gas after treatment.  相似文献   

10.
温广  张朋 《无机化学学报》2005,21(10):1535-1540
Temperature-programmed reduction (H2-TPR) was employed to quantitatively characterize the active oxygen species generated from a high Fe-loading Fe/ZSM-5 catalyst exposed to N2O at 250 ℃. [Fe-O-Fe]2+ dimer was determined as the active iron complex for N2O decomposition to produce the active oxygen. Reduction of Fe3+ to Fe2+ by H2 in the dimer and removal of OH- groups from Fe2+ dimer by heating Fe/ZSM-5 to 700 ℃ were the prerequisites for the formation of this active Fe complex. A linear correlation with a slope of 1.0 between the amount of [Fe-O-Fe]2+ and that of active oxygen species was observed. Maximum amount of active oxygen species can be generated by reducing Fe/ZSM-5 catalyst with H2 at the temperatures over 500 ℃ and then heating the resulting product in Ar to 700 ℃, followed by N2O exposure at 250 ℃. The ratio of the total number of oxygen atoms (Ode) deposited by interaction of [Fe-O-Fe]2+ with N2O to the amount of [Fe-O-Fe]2+ was 2. However, not all the deposited oxygen atoms were active oxygen (Oa); the ratio of Oa and Ode was 0.5. The iron dimer complex composing active oxygen is a five-atom ion [Fe2O3]2+; the most probable structure is as follows:  相似文献   

11.
K3InF6 is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K2InC10O10H6F9, K3InC12O14H4F18 and K3InC12O12F18. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. The two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K3InF6 by decomposition at high temperature. The crystal structure of K3InC12O14H4F18 is characterized by complex anions [In(CF3COO)4(OHx)2](5−2x)− and isolated [CF3COOH2−x](x−1)− molecules with x=2 or 1, surrounded by K+ cations. The crystal structure of K3InC12O12F18 is only constituted by complex anions [In(CF3COO)6]3− and K+ cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K2InC10O10H6F9 and K3InC12O12F18 were also performed at room temperature on pulverized crystals.  相似文献   

12.
一些具有NASICON型网格结构的固体电解质具有高的电导率和好的稳定性,NASICON的意思是Na Super Ionic Conductor[1]。当NaZr2(PO4)3中P5 被Si4 部分取代时便可以得到具有NASICON结构的Na1 xZr2SixP3-xO12体系,其具有高的钠离子电导率。然而有相同结构的Li1 xZr2SixP3-xO12体系的离子电导率却很低,这是因为Li 半径太小,而NASICON三维网格结构的离子通道太大,两者不匹配而使电导率下降[2]。但当LiZr2(PO4)3中Zr4 被离子半径小些的Ti4 取代,所得LiTi2(PO4)3的通道就与Li 半径相匹配,适合于锂离子的迁移,从而使其电导率…  相似文献   

13.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

14.
The ferroelectric ceramics of Bi4Ti3O12, SrBi4Ti4O15, and lanthanum-doped Bi4Ti3O12-SrBi4Ti4O15 were synthesized, and their Raman spectra were investigated. La-doping resulted in the enlargement of remnant polarization of Bi4Ti3O12-SrBi4Ti4O15. The structure of the Bi2O2 layers and TiO6 octahedra of the intergrowth was found to be different from those of Bi4Ti3O12 and SrBi4Ti4O15. La3+ ions exhibit pronounced selectivity for the occupation of A site as La content is lower than 0.50, and tend to be incorporated into Bi2O2 layers when the La content is higher than 0.50. Lanthanum substitution brings about the structural phase transition in Bi4Ti3O12-SrBi4Ti4O15. The variation of ferroelectric property may be attributed to combined contribution from the decreasing of the oxygen vacancies, the relaxation of the lattice distortion, the destroying of the insulation and the space charge compensation effects of the Bi2O2 slabs.  相似文献   

15.
A new oxide, Bi14Sr21Fe12O61, with a layered structure derived from the 2212 modulated type structure Bi2Sr3Fe2O9, was isolated. It crystallizes in the I2 space group, with the following parameters: a=16.58(3) Å, b=5.496(1) Å, c=35.27(2) Å and β=90.62°. The single crystal X-ray structure determination, coupled with electron microscopy, shows that this ferrite is the m=5 member of the [Bi2Sr3Fe2O9]m[Bi4Sr6Fe2O16] collapsed family. This new collapsed structure can be described as slices of 2212 structure of five bismuth polyhedra thick along , shifted with respect to each other and interconnected by means of [Bi4Sr6Fe2O16] slices. The latter are the place of numerous defects like iron or strontium for bismuth substitution; they can be correlated to intergrowth defects with other members of the family.  相似文献   

16.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

17.
Single crystals of Ca3CuRhO6, Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 were synthesized by high temperature flux growth in molten K2CO3 and structurally characterized by single crystal X-ray diffraction. While Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 crystallize with trigonal (rhombohedral) symmetry in the space group , Z=6: Ca3Co1.34Rh0.66O6a=9.161(1) Å, c=10.601(2) Å; Ca3FeRhO6a=9.1884(3) Å, c=10.7750(4) Å; Ca3CuRhO6 adopts a monoclinic distortion of the K4CdCl6 structure in the space group C2/c, Z=4: a=9.004(2) Å, b=9.218(2) Å, c=6.453(1) Å, β=91.672(5). All crystals of Ca3CuRhO6 examined were twinned by pseudo-merohedry. Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are structurally related and contain infinite one-dimensional chains of alternating face-sharing RhO6 octahedra and MO6 trigonal prisms. In the monoclinic modification, the copper atoms are displaced from the center of the trigonal prism toward one of the rectangular faces adopting a pseudo-square planar configuration. The magnetic properties of Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are discussed.  相似文献   

18.
The basic mercury(I) chromate(VI), Hg6Cr2O9 (=2Hg2CrO4·Hg2O), has been obtained under hydrothermal conditions (200 °C, 5 days) in the form of orange needles as a by-product from reacting elemental mercury and K2Cr2O7. Hydrothermal treatment of microcrystalline Hg6Cr2O9 in demineralised water at 200 °C for 3 days led to crystal growth of red crystals of the basic mercury(I, II) chromate(VI), Hg6Cr2O10 (=2Hg2CrO4·2HgO). The crystal structures were solved and refined from single crystal X-ray data sets. Hg6Cr2O9: space group P212121, Z=4, a=7.3573(12), b=8.0336(13), , 3492 structure factors, 109 parameters, R[F2>2σ(F2)]=0.0371, wR(F2 all)=0.0517; Hg6Cr2O10: space group Pca21, Z=4, a=11.4745(15), b=9.4359(12), , 3249 structure factors, 114 parameters, R[F2>2σ(F2)]=0.0398, wR(F2 all)=0.0625. Both crystal structures are made up of an intricate mercury-oxygen network, subdivided into single building blocks [O-Hg-Hg-O] for the mercurous compound, and [O-Hg-Hg-O] and [O-Hg-O] for the mixed-valent compound. Hg6Cr2O9 contains three different Hg22+ dumbbells, whereas Hg6Cr2O10 contains two different Hg22+ dumbbells and two Hg2+ cations. The HgI-HgI distances are characteristic and range between 2.5031(15) and 2.5286(9) Å. All Hg22+ groups exhibit an unsymmetrical oxygen environment. The oxygen coordination of the Hg2+ cations is nearly linear with two tightly bonded O atoms at distances around 2.07 Å. For both structures, the chromate(VI) anions reside in the vacancies of the Hg-O network and deviate only slightly from the ideal tetrahedral geometry with average Cr-O distances of ca. 1.66 Å. Upon heating at temperatures above 385 °C, Hg6Cr2O9 decomposes in a four-step mechanism with Cr2O3 as the end-product at temperatures above 620 °C.  相似文献   

19.
吴关  周盈科 《无机化学学报》2018,34(7):1333-1340
使用液相包覆工艺对LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)材料进行FePO_4包覆改性,利用FePO_4优异的结构稳定性与热稳定性,对NCA的长期可靠性与安全性能进行改良。重点研究FePO_4包覆对NCA材料的改性效果,以及不同包覆量造成的NCA材料电化学性能差异。表面包覆的FePO_4保护层,能够防止NCA材料与电解液直接接触发生副反应,抑制长期循环过程中过渡金属离子的溶出,保持结构的长期稳定性。当包覆量为1.0%(w/w)时,NCA材料表现出最优的综合性能,充放电循环800次后,容量保持率依然高达95%,25℃下存储100 d后,容量保持率也高于95%,达到了兼顾能量密度、使用寿命及安全性能的理想效果。  相似文献   

20.
The objectives of this study were to address uncertainties in the solubility product of (UO2)3(PO4)2⋅4H2O(c) and in the phosphate complexes of U(VI), and more importantly to develop needed thermodynamic data for the Pu(VI)-phosphate system in order to ascertain the extent to which U(VI) and Pu(VI) behave in an analogous fashion. Thus studies were conducted on (UO2)3(PO4)2⋅4H2O(c) and (PuO2)3(PO4)2⋅4H2O(am) solubilities for long-equilibration periods (up to 870 days) in a wide range of pH values (2.5 to 10.5) at fixed phosphate concentrations of 0.001 and 0.01 M, and in a range of phosphate concentrations (0.0001–1.0 M) at fixed pH values of about 3.5. A combination of techniques (XRD, DTA/TG, XAS, and thermodynamic analyses) was used to characterize the reaction products. The U(VI)-phosphate data for the most part agree closely with thermodynamic data presented in Guillaumont et al.,(1) although we cannot verify the existence of several U(VI) hydrolyses and phosphate species and we find the reported value for formation constant of UO2PO4 is in error by more than two orders of magnitude. A comprehensive thermodynamic model for (PuO2)3(PO4)2⋅4H2O(am) solubility in the H+-Na+-OH-Cl-H2PO4-HPO2−4-PO3−4-H2O system, previously unavailable, is presented and the data shows that the U(VI)-phosphate system is an excellent analog for the Pu(VI)-phosphate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号