首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photodissociation dynamics of CH(3)I from 277 to 304 nm is studied with our mini-TOF photofragment translational spectrometer. A single laser beam is used for both photodissociation of CH(3)I and REMPI detection of iodine. Many resolved peaks in each photofragment translational spectrum reveal the vibrational states of the CH(3) fragment. There are some extra peaks showing the existence of the hot-band states of CH(3)I. After careful simulation with consideration of the hot-band effect, the distribution of vibrational states of the CH(3) fragment is determined. The fraction σ of photofragments produced from the hot-band CH(3)I varies from 0.07 at 277.38 nm to 0.40 at 304.02 nm in the I* channel and from 0.05 at 277.87 nm to 0.16 at 304.67 nm in the I channel . E(int)/E(avl) of photofragments from ground-state CH(3)I remains at about 0.03 in the I* channel for all four wavelengths, but E(int)/E(avl) decreases from 0.09 at 277.87 nm to 0.06 at 304.67 nm in the I channel . From the ground-state CH(3)I, the quantum yield Φ(I*) is determined to be 0.59 at 277 nm and 0.05 at 304 nm. The curve-crossing probability P(cc) from the hot-band CH(3)I is lower than that from the ground-state CH(3)I. The potential energy at the curve-crossing point is determined to be 32,740 cm(-1).  相似文献   

2.
The photodissociation dynamics of propyl iodides n-C3H7I and i-C3H7I near 280 and 304 nm has been investigated with our mini-TOF photofragment translational spectrometer. When a single laser is applied for both the photodissociation of parent molecules and the REMPI of I atom photofragments, the TOF spectra of photofragments I*(2P1/2) and I (2P3/2) are obtained at four different wavelengths for these two iodides. For n-C3H7I, some small vibrational peaks are partially resolved (with separation of approximately 522 cm-1, corresponding to the RCH2 deformation frequency of the fragment n-C3H7) at 281.73, 279.71, and 304.67 nm. These results show that the RCH2 deformation is mostly excited. For i-C3H7I, we obtain some partially resolved vibrational peaks (with separation of approximately 352 cm-1, corresponding to the HC(CH3)2 out-of-plane bending frequency of the fragment i-C3H7) at 281.73 nm only. For n-C3H7I, the partitioning values of the available energy Eint/Eavl are 0.48 at 281.73 nm and 0.49 at 304.02 nm for the I* channel, and 0.52 at both 279.71 and 304.67 nm for the I channel. These energy partitioning values are comparable with the previous results at different wavelengths in the literature. For i-C3H7I, the Eint/Eavl values are 0.61 at 281.73 nm, 0.65 at 304.02 nm for the I* channel, and 0.62 at 279.71 nm, 0.49 at 304.67 nm for the I channel. The potential-energy-surface crossing and the beta values have also been discussed.  相似文献   

3.
We present a direct current slice imaging study of tetrachloroethylene (C(2)Cl(4)) photodissociation, probing the resulting ground state Cl ((2)P(3/2)) and spin-orbit excited state Cl* ((2)P(1/2)) products. We report photofragment images, total translational energy distributions and the product branching ratio of Cl*/Cl following dissociation at 235 and 202 nm, obtained using a two-color reduced-Doppler dissociation/probe. Near 235 nm, the Cl translational energy distribution shows a peak at the limit of the available energy, indicating a direct dissociation through a σ*(C-Cl) ← π (C=C) transition, which is superimposed on a broader underlying distribution. The ground state Cl image and associated translational energy distribution at 202 nm is broad and peaked at lower energy, suggesting either internal conversion to the ground state or a lower excited state prior to dissociation. The Cl* images are similarly broad at both wavelengths. The branching ratio is presented as a function of recoil energy, but after integration shows a near-statistical average of Cl:Cl* as 70:30 at both wavelengths. All the images are largely isotropic, with anisotropy parameters (β) of 0.05 ± 0.03.  相似文献   

4.
The photodissociation dynamics of chloroiodomethane (CH2ICl) at 193 nm has been investigated by employing the photofragment time-of-flight (TOF) mass spectrometric method. Using tunable vacuum ultraviolet undulator synchrotron radiation for photoionization sampling of nascent photofragments, we have identified four primary dissociation product channels: CH2Cl + I(2P(1/2))/I(2P(3/2)), CH2I + Cl(2P(1/2))/Cl(2P(3/2)), CHI + HCl, and CH2 + ICl. The state-selective detection of I(2P(3/2)) and I(2P(1/2)) has allowed the estimation of the branching ratio for I(2P(1/2)):I(2P(3/2)) to be 0.73:0.27. Theoretical calculations based on the time-dependent density-functional theory have been also made to investigate excited electronic potential-energy surfaces, plausible intermediates, and transition structures involved in these photodissociation reactions. The translation energy distributions derived from the TOF measurements suggest that at least two dissociation mechanisms are operative for these photodissociation processes. One involves the direct dissociation from the 2 1A' state initially formed by 193 nm excitation, leading to significant kinetic-energy releases. For the I-atom and Cl-atom elimination channels, the fragment kinetic-energy releases observed via this direct dissociation mechanism are consistent with those predicted by the impulsive dissociation models. Other mechanisms are likely predissociative or statistical in nature from the lower 1 1A' and 1 1A' states and/or the ground X 1A' state populated by internal conversion from the 2 1A' state. On the basis of the maximum kinetic-energy release for the formation of CH2Cl + I(2P(1/2)), we have obtained a value of 53+/-2 kcal/mol for the 0 K bond dissociation energy of I-CH2Cl. The intermediates and transition structures for the CHI + HCl and CH2 + ICl product channels have been also investigated by ab initio quantum calculations at the MP2(full)/6-311G(d) and B3LYP(full)/6-11G(d) levels of theory. The maximum kinetic-energy releases observed for the CHI + HCl and CH2 + ICl channels are consistent with the interpretation that the formation of CHI and CH2 in their ground triplet states is not favored.  相似文献   

5.
The 304 nm photodissociation of the C-H symmetric stretch excited CH3I[v1=1,v2=0](v1 denotes the C-H symmetric stretch mode,and v2 denotes the umbrella mode)is studied with our simple photofragment translational spectrometer.An IR laser is used to excite the ground state CH3I[0,0]to the C-H symmetric stretch excited CH3I[1,0].With IR laser OFF and ON,the fractions of photofragments CH3(ν1,ν2)from the 304 nm photodissociation of CH3I[1,0]have been determined through the photofragment translational spectra(PTS)from measuring I and I*and also through the PTS from measuring CH3(0,0)(1,0)(0,1)and(1,1).The experimental results show that the C-H symmetric stretch vibration(v1=1)in parent molecules is about 66%retained in the photofragments in the I channel,but only 24%in the I*channel.The populations of photofragments CH3(0,2)and(0,3)are higher than CH3(0,0)and(0,1),showing strong inverted population both in I and I*channels.  相似文献   

6.
High-resolution photofragment translational spectroscopy is used in this work to measure the translational and internal energy distributions in the CD3 and iodine fragments produced from the photodissociation of CD3I at 266 and 304 nm. Channel selected detection, via resonantly enhanced multiphoton ionization, combined with one-dimensional core sampling provides detailed information about vibrational state distributions of the CD3 fragments. The vibrational state distributions of CD3 fragments in the I*(2P12) channel have a propensity of nu2 ' umbrella bending mode with a maximum at nu2 ' = 1 for 266 nm photodissociation. For I*(2P12) channel at 304 nm photodissociation, vibrational state distributions of CD3 fragment have a maximum in the vibrational ground state. For the I(2P32) channel (1Q1 <-- 3Q(0+)), nu2 ' umbrella bending vibrational distribution is measured as the predominant vibrational mode but has a much broader distribution when compared to that of the I* channel. The vibrational state distributions of the CD3 fragment produced from the perpendicular transition, i.e., 3Q1, which was determined at 304 nm photodissociation, has a maximum at nu2 ' = 1. The curve crossing possibility between the 1Q1 and 3Q(0+) adiabatic potentials is determined as 0.19 for 266 and 0.85 for 304 nm. The trend in reaction dynamics in 266 and 304 nm photodissociation of CD3I is compared with theoretical calculations. A bond dissociation energy D0(C-I) = 56.60+/-0.5 kcal/mol was derived by applying laws of energy conservation.  相似文献   

7.
Photofragment translational spectroscopy was used to identify the primary and secondary reaction pathways in 193 nm photodissociation of chlorine azide (ClN(3)) under collision-free conditions. Both the molecular elimination (NCl+N(2)) and the radical bond rupture channel (Cl+N(3)) were investigated and compared with earlier results at 248 nm. The radical channel strongly dominates, just as at 248 nm. At 193 nm, the ClN(3) (C (1)A(")) state is excited, rather than the B (1)A(') state that is accessed at 248 nm, resulting in different photofragment angular distributions. The chlorine translational energy distribution probing the dynamics of the radical bond rupture channel shows three distinct peaks, with the two fastest peaks occurring at the same translational energies as the two peaks seen at 248 nm that were previously assigned to linear and "high energy" N(3). Hence, nearly all the additional photon energy relative to 248 nm appears as N(3) internal excitation rather than as translational energy, resulting in considerably more spontaneous dissociation of N(3) to N(2)+N.  相似文献   

8.
The photodissociation dynamics of I3- from 390 to 290 nm (3.18 to 4.28 eV) have been investigated using fast beam photofragment translational spectroscopy in which the products are detected and analyzed with coincidence imaging. At photon energies < or = 3.87 eV, two-body dissociation that generates I- + I2(A 3Pi1) and vibrationally excited I2- (X 2Sigmau+) + I(2P(3/2)) is observed, while at energies > or = 3.87 eV, I*(2P(1/2)) + I2- (X 2Sigmau+) is the primary two-body dissociation channel. In addition, three-body dissociation yielding I- +2I(2P(3/2)) photofragments is seen throughout the energy range probed; this is the dominant channel at all but the lowest photon energy. Analysis of the three-body dissociation events indicates that this channel results primarily from a synchronous concerted decay mechanism.  相似文献   

9.
The detailed reaction dynamics of CH(3)I photodissociation at 304 nm were studied by using high-resolution long time-delayed core-sampling photofragment translation spectroscopy. The vibrational state distributions of the photofragment, i.e., CH(3), are directly resolved due to the high kinetic resolution of this experiment for the first time. CH(3) radicals produced from I((3)Q(0+)), I((1)Q(1) <--( 3)Q(0+)), and I((3)Q(1)) channels are populated in different vibrational state distributions. The I((3)Q(0+)) and I((3)Q(1)) channels show only progressions in the nu2'(a2") umbrella bending mode, and the I((1)Q(1) <-- (3)Q(0+)) channel shows both progression in the nu2' umbrella bending mode and a small amount of excitation in the nu1'(a1') C-H stretching mode. The photodissociation processes from the vibrational hot band of CH(3)I (upsilon3 = 1, upsilon3 = 2) were also detected, primarily because of the absorption probability from the vibrational excited states, i.e., hot bands are relatively enhanced. Photofragments from the hot bands of CH(3)I show a cold vibrational distribution compared to that from the vibrational ground state of CH(3)I. The I* quantum yield and the curve crossing possibility were also studied for the ground vibrational state of CH(3)I. The potential energy at the curve crossing point was calculated to be 32 790 cm(-1) by using the one-dimensional Landau-Zener model.  相似文献   

10.
Photodissociation dynamics of iodoacetonitrile (ICH2CN) have been investigated at pump wavelengths of 266 and 304 nm using a photofragment ion image velocity mapping technique. At both wavelengths, the prompt C-I bond rupture takes place on the repulsive excited states to give I(2P3/2) and I*(2P1/2), and their speed and spatial distributions are simultaneously measured. The recoil anisotropy parameter (beta) at 266 nm is determined to be 1.10 and 1.60 for I and I*, respectively, while it is found to be much higher at 304 nm to give beta=1.70 and 1.90 for I and I*, respectively. The branching ratios for I*I channels are measured to be 0.724 and 0.136 at 266 and 304 nm, respectively, giving insights on nonadiabatic transition phenomena and relative oscillator strengths of optically accessible transitions of ICH2CN. Accordingly, relative oscillator strengths of parallel/perpendicular transitions and nonadiabatic transitions among the excited states are quantitatively characterized. A large portion of the available energy (41%-48%) goes into the internal energy of the CH2CN fragment. A modified impulsive model in which the CH2CN fragment is assumed to be rigid predicts the energy disposal quite well. Delocalization of an unpaired electron of the CH2CN radical during the C-I bond cleavage, leading to a large structural change of the CH2CN moiety, may be responsible for internally hot fragments.  相似文献   

11.
We have implemented the velocity map imaging technique to study clustering in the pulsed supersonic expansions of hydrogen bromide in helium, argon, and xenon. The expansions are characterized by direct imaging of the beam velocity distributions. We have investigated the cluster generation by means of UV photodissociation and photoionization of HBr molecules. Two distinct features appear in the hydrogen atom photofragment images in the clustering regime: (i) photofragments with near zero kinetic energies and (ii) "hot" photofragments originating from vibrationally excited HBr molecules. The origin of both features is attributed to the fragment caging by the cluster. We discuss the nature of the formed clusters based on the change of the photofragment images with the expansion parameters and on the photoionization mass spectra and conclude that single HBr molecule encompassed with rare gas "snowball" is consistent with the experimental observations.  相似文献   

12.
ICl photolysis in the ultraviolet region of the spectrum (235-265 nm) is studied using the Slice Imaging technique. The Cl?((2)P(1/2))/Cl((2)P(3/2)) and the I?((2)P(1/2))/I((2)P(3/2)) branching ratio between the I((2)P(3/2)) + Cl((2)P(3/2))∕Cl?((2)P(1/2)) and I?((2)P(1/2)) + Cl((2)P(3∕/2))∕Cl?((2)P(1/2)) channels is extracted from the respective iodine and chlorine photofragment images. We find that ground state chlorine atoms (Cl((2)P(3/2))) are formed nearly exclusively with excited state iodine atoms (I?((2)P(1/2))), while excited spin-orbit chlorine atoms (Cl?((2)P(1/2))) are concurrently produced only with ground state iodine atoms (I((2)P(3/2))). We conclude that photolysis of ICl in this UV region is a relatively "clean" source of spin-orbit excited chlorine atoms that can be used in crossed molecular beam experiments.  相似文献   

13.
The dynamics of the 193 nm photodissociation of the CFCl and CFBr molecules have been investigated in a molecular beam experiment. The CFCl and CFBr parent molecules were generated by pyrolysis of CHFCl2 and CFBr3, respectively, and the CFCl and the CF photofragment were detected by laser fluorescence excitation. The 193 nm attenuation cross section of CFCl was determined from the reduction of the CF photofragment signal as a function of the photolysis laser fluence. The internal state distribution was derived from the analysis of laser fluorescence excitation spectra in the A 2Sigma+-X 2Pi band system. A very low degree of rotational excitation, with essentially equal A' and A" Lambda-doublet populations, and no vibrational excitation were found in the CF photofragment. The energy available to the photofragments is hence predominantly released as translational energy. The CF internal state distribution is consistent with the dissociation of a linear intermediate state. Considerations of CFCl electronic states suggest that a bent Rydberg state is initially excited.  相似文献   

14.
The dynamics of the 193 nm photodissociation of the CCl2 molecule have been investigated in a molecular beam experiment. The CCl2 parent molecule was generated in a molecular beam by pyrolysis of CHCl3, and both CCl2 and the CCl photofragment were detected by laser fluorescence excitation. The 193 nm attenuation cross section was estimated from the reduction of the CCl2 signal as a function of the photolysis laser fluence. The internal state distribution of the CCl photofragment was derived from analysis of laser fluorescence excitation spectra in the A 2Delta-X 2Pi band system. Most of the energy available to the CCl(X 2Pi)+Cl fragments appears as translational energy. The CCl fragment rotational energy is much less than predicted in an impulsive model. The excited electronic state appears to dissociate indirectly, through coupling with a repulsive state arising from the ground-state CCl(X 2Pi)+Cl asymptote. The identity of the initially excited electronic state is discussed on the basis of what is known about the CCl2 electronic states.  相似文献   

15.
The photodissociation dynamics of CH(2)Br(2) was investigated near 234 and 267 nm. A two-dimensional photofragment ion velocity imaging technique coupled with a [2+1] resonance-enhanced multiphoton (REMPI) ionization scheme was utilized to obtain the angular and translational energy distributions of the nascent Br ((2)P(3/2)) and Br* ((2)P(1/2)) atoms. The obtained translational energy distributions of Br and Br* are found consist of two components which should be come from the radical channel and secondary dissociation process, respectively. It is suggested that the symmetry reduction from C(2v) to C(s) during photodissociation invokes a non-adiabatic coupling between the 2B(1) and A(1) states. Consequently, the higher internal energy distribution of Br channel than Br* formation channel and the broader translational energy distribution of the former are presumed correlate with a variety of vibrational excitation disposal at the crossing point resulting from the larger non-adiabatic crossing from 2B(1) to A(1) state than the reverse crossing. Moreover, the measured anisotropy parameter beta indicate that fragments recoil along the Br-Br direction mostly in the photodissociation.  相似文献   

16.
The photodissociation dynamics of allyl bromide was investigated at 234, 265, and 267 nm. A two-dimensional photofragment ion velocity imaging technique coupled with a [2+1] resonance-enhanced multiphoton ionization scheme was utilized to obtain the angular and translational energy distributions of the nascent Br* (2P1/2) and Br (2P3/2) atoms. The Br fragments show a bimodal translational energy distribution, while the Br* fragments reveal one translational energy distribution. The vertical excited energies and the mixed electronic character of excited states were calculated at ab initio configuration interaction method. It is presumed that the high kinetic energy bromine atoms are attributed to the predissociation from 1(pipi*) or 1(pisigma*) state to the repulsive 1(nsigma*) state, and to the direct dissociation from 3(nsigma*) and 3(pisigma*) states, while the low kinetic energy bromine atoms stem from internal conversion from the lowest 3(pipi*) state to 3(pisigma*) state.  相似文献   

17.
张昌华  张延  张嵩  张冰 《物理化学学报》2009,25(8):1708-1712
利用离子速度影像方法结合共振增强多光子电离(REMPI)技术研究了氯碘甲烷在A带的光解机理. 从266和277 nm的I*(5p 2P1/2)和I(5p 2P3/2)离子速度影像获得了碎片的平动能分布和角度分布. I和I*的平动能分布呈单高斯型, 可用软自由基近似来解释. I和I*是在排斥的势能面上直接解离产生的. 实验得到的各向异性参数β证实分子受激发后主要产生3Q0态, 并且3Q0和1Q1态之间存在非绝热转移. 波长越短, 这种非绝热转移越强. 在235 nm附近, Cl和Cl*各向同性的离子影像说明氯原子来自于CH2ICl的二次解离过程, 即CH2ICl先解离产生CH2Cl自由基, 自由基再解离产生氯原子.  相似文献   

18.
Transitions of two different stereoisomers of the He...ICl(X,v" = 0) weakly bound complex, one with a T-shaped orientation and another that is most likely linear, have been observed in laser-induced fluorescence experiments performed in the ICl B-X region. Here we present experimental and theoretical results aimed at confirming the previous assignments and at gaining additional insights into the He+ICl interactions. High resolution action spectra were recorded in the same region to identify those features that could be attributed to transitions of the He...I35Cl(X,v" = 0) isomers and not to higher-order complexes, Hen...I35Cl, where n > or = 2, or I37Cl containing species. Calculations of the rovibronic spectra of the He...I35Cl complexes in the ICl B-X, 2-0 and 3-0 regions were performed using an ab initio potential energy surface for the He+ICl(X,v" = 0) ground state and two different pairwise additive potentials for the He+ICl(B,v' = 2,3) excited states. The rotation-vibration energies and wave functions for the He cdots, three dots, centered I35Cl complexes were obtained for all bound states with total angular momentum J < 10 using both of these potentials. Electronic spectra were generated using these results, assuming that the transition moment lies along the ICl bond and is not perturbed by the presence of the helium atom. The calculations qualitatively reproduce the He cdots, three dots, centered I35Cl action spectrum and strongly support the previous assignments. The calculations also indicate that some of the spectral congestion observed near the linear band may be attributed to transitions of the linear isomer to multiple intermolecular levels in the excited state. Coriolis coupling strongly mixes He cdots, three dots, centered ICl(B,v') states with rotational excitation, making simulations and assignments of the linear band observed in the experimental spectrum difficult.  相似文献   

19.
The photodissociation dynamics of the tert-butyl radical (t-C(4)H(9)) were investigated using photofragment translational spectroscopy. The tert-butyl radical was produced from flash pyrolysis of azo-tert-butane and dissociated at 248 nm. Two distinct channels of approximately equal importance were identified: dissociation to H + 2-methylpropene, and CH(3) + dimethylcarbene. Neither the translational energy distributions that describe these two channels nor the product branching ratio are consistent with statistical dissociation on the ground state, and instead favor a mechanism taking place on excited state surfaces.  相似文献   

20.
The photodissociation spectroscopy and dynamics resulting from excitation of the B (2)A(")<--X (2)A(") transition of CH(2)CFO have been examined using fast beam photofragment translational spectroscopy. The photofragment yield spectrum reveals vibrationally resolved structure between 29 870 and 38 800 cm(-1), extending approximately 6000 cm(-1) higher in energy than previously reported in a laser-induced fluorescence excitation spectrum. At all photon energies investigated, only the CH(2)F+CO and HCCO+HF fragment channels are observed. Both product channels yield photofragment translational energy distributions that are characteristic of a decay mechanism with a barrier to dissociation. Using the barrier impulsive model, it is shown that fragmentation to CH(2)F+CO products occurs on the ground state potential energy surface with the isomerization barrier between CH(2)CFO and CH(2)FCO governing the observed translational energy distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号