首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new poly(sulfone ether imide) was prepared, and related nanocomposites were produced through introduction of sepiolite nanoparticles into the matrix of polymer. Inherent viscosity, thermal and mechanical features of pristine poly(sulfone ether imide), and nanocomposite samples were evaluated and compared. The crystallinity was also investigated. Dispersion and distribution behaviors of nanocomposite samples and cross‐sectional morphology of nanocomposite films were also studied. Also, the optimized amounts of sepiolite nanoparticles in the matrix of polymer were determined by microscopic techniques (scanning electron microscope and transmission electron microscope). By introduction of 3 wt% of sepiolite, superior thermal and mechanical properties were observed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A novel bis(ether anhydride) monomer, 3,6‐bis(3,4‐dicarboxyphenoxy)benzonorbornane dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile with 3,6‐dihydroxybenzonorbornane in the presence of potassium carbonate, followed by the alkaline hydrolysis of the intermediate bis(ether dinitrile) and the cyclodehydration of the resulting bis(ether diacid). A series of poly(ether imide)s bearing pendant norbornane groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were 0.81–1.81 dL/g. The poly(ether imide) with m‐phenylenediamine as a diamine showed good organosolubility. Most of the cast poly(ether imide) films have had high tensile strengths and moduli. The glass‐transition temperatures of these poly(ether imide)s, except for those from rigid p‐phenylenediamine and benzidine, were recorded between 211 and 246 °C by differential scanning calorimetry. The softening temperatures of all the poly(ether imide) films stayed within 210–330 °C according to thermomechanical analysis. No polymers showed significant decomposition before 500 °C in a nitrogen or air atmosphere. A comparative study of the properties with the corresponding poly(ether imide)s without pendant substituents was also made. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1712–1725, 2002  相似文献   

3.
A new adamantane‐based bis(ether anhydride), 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]adamantane dianhydride, was prepared in three steps starting from nitrodisplacement of 4‐nitrophthalonitrile with the potassium phenolate of 2,2‐bis(4‐hydroxyphenyl)adamantane. A series of adamantane‐containing poly(ether imide)s were prepared from the adamantane‐based bis(ether anhydride) and aromatic diamines by a conventional two‐stage synthesis in which the poly(ether amic acid)s obtained in the first stage were heated stage‐by‐stage at 150–270°C to give the poly(ether imide)s. The intermediate poly(ether amic acid)s had inherent viscosities between 0.56 and 1.92 dL/g. Except for those from p‐phenylenediamine, m‐phenylenediamine, and benzidine, all the poly(ether amic acid) films could be thermally converted into transparent, flexible, and tough poly(ether imide) films. All the poly(ether imide)s showed limited solubility in organic solvents, although they were amorphous in nature as evidenced by X‐ray diffractograms. Glass transition temperatures of these poly(ether imide)s were recorded in the range of 242–317°C by differential scanning calorimetry and of 270–322°C by dynamic mechanical analysis. They exhibited high resistance to thermal degrdation, with 10% weight loss temperatures being recorded between 514–538°C in nitrogen and 511–527°C in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1619–1628, 1999  相似文献   

4.
Using poly(amic acid) (PAA) as a precursor followed by thermal imidization, the polyimide/silica nanocomposite films were prepared via an improved sol–gel process and a blending process, respectively. FT‐IR, TEM and TGA measurements were used to characterize the structure and properties of the obtained films. The results confirmed that the introduction of silica did not yield negative effects on the conversion of the PAA precursor to the polyimide. With the increase of silica content, the aggregation of silica appeared in the polyimide matrix, and the thermal stability decreased slightly for both kinds of films. The dielectric constant (ε) of both films increased slowly with the increase of the silica concentration. The dielectric constant of the obtained polyimide/silica nanocomposite films displayed good stability within a wide range of temperatures or frequency. Based on modeling relation between ε and silica content, the difference in dielectric properties for two kinds of nanocomposites are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Poly(amic acid) was synthesized with a low‐temperature solution polymerization of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. The cast films were thermally treated at various temperatures. The polyimide containing the hydroxyl group was rearranged by decarboxylation, resulting in a fully aromatic polybenzoxazole at temperatures higher than 430 °C. These stepwise cyclizations were monitored with elemental analysis, Fourier transform infrared, and nuclear magnetic resonance. Microanalysis results confirmed the chemical compositions of poly(amic acid), polyimide, and polybenzoxazole, respectively. A cyclodehydration from poly(amic acid) to polyimide occurred between 150 and 250 °C in differential scanning calorimetry, and a cyclodecarboxylation to polybenzoxazole appeared at 400–500 °C. All the samples were stable up to 625 °C in nitrogen and displayed excellent thermal stability. Polybenzoxazole showed better thermal stability than polyimide, but polyimide exhibited better mechanical properties than polybenzoxazole. However, polyimide showed a crystalline pattern under a wide‐angle X‐ray, whereas polybenzoxazole was amorphous. The precursor poly(amic acid) was readily soluble in a variety of solvents, whereas the polyimide and polybenzoxazole were not soluble at all. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2537–2545, 2000  相似文献   

6.
A novel bis(ether anhydride) monomer, 2′,5′‐bis(3,4‐dicarboxyphenoxy)‐p‐terphenyl dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile by the phenoxide ion of 2′,5′‐dihydroxy‐p‐terphenyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and cyclodehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s bearing laterally attached p‐terphenyl groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal or chemical imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were in the range of 0.62–1.26 dL/g. Most of the poly(ether imide)s obtained from both routes were soluble in polar organic solvents, such as N,N‐dimethylacetamide. All the poly(ether imide)s could afford transparent, flexible, and strong films with high tensile strengths. The glass‐transition temperatures of these poly(ether imide)s were recorded as between 214 and 276 °C by DSC. The softening temperatures of all the poly(ether imide) films stayed in the 207–265 °C range according to thermomechanical analysis. For all the polymers significant decomposition did not occur below 500 °C in nitrogen or air atmosphere. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1008–1017, 2004  相似文献   

7.
Two series of novel fluorinated poly(ether imide)s (coded IIIA and IIIB ) were prepared from 2,6‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride and 2,7‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride, respectively, with various trifluoromethyl‐substituted aromatic bis(ether amine)s by a standard two‐step process with thermal or chemical imidization of the poly(amic acid) precursors. These fluorinated poly(ether imide)s showed good solubility in many organic solvents and could be solution‐cast into transparent, flexible, and tough films. These films were nearly colorless, with an ultraviolet–visible absorption edge of 364–386 nm. They also showed good thermal stability with glass‐transition temperatures of 221–298 °C, 10% weight loss temperatures in excess of 489 °C, and char yields at 800 °C in nitrogen greater than 50%. The 2,7‐substituted IIIB series also showed better solubility and higher transparency than the isomeric 2,6‐substituted IIIA series. In comparison with nonfluorinated poly (ether imide)s, the fluorinated IIIA and IIIB series showed better solubility, higher transparency, and lower dielectric constants and water absorption. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5909–5922, 2006  相似文献   

8.
New poly(ether ether imide)s were synthesized based on an aromatic diamine containing pyridine and four ether groups. Diamine was designed to induce desirable properties to final polymer such as flexibility and processability in addition to thermal stability. The diamine was synthesized via a three-step procedure. Firstly, 1-fluoro-4-nitrobenzene was reacted with hydroquinone to obtain a nitrophenol compound. Next, the catalytic reduction was performed to convert nitro to amino group. Finally, the resulted aminophenol was reacted with 2,6-dichloropyridine and the diamine was synthesized. Polycondensation reactions of the diamine with three dianhydrides led to the preparation of novel poly(ether ether imide) films. All prepared materials and polymers were completely characterized. Thermal stability and glass transition temperature of polyimides were measured and compared. Mechanical properties and cross-section morphology of films were also investigated. Poly(ether ether imide)s revealed unique balance of physical and thermal properties including very high flexibility along with outstanding thermal stability.  相似文献   

9.
The photosensitive poly(p-phenylene biphenylteracarboximide) (BPDA-PDA) precursor was synthesized by attaching photocross-linkable 2-(dimethylamino)ethyl methacrylate (DMAEM) monomer to its poly(amic acid) through acid/base complexation. The polyimide thin films were prepared by a conventional cast/softbake/thermal imidization process from the photosensitive precursors with various concentrations of DMAEM. The structure and properties of the polyimide films were investigated by small-angle and wide-angle x-ray scattering, refractive indices and birefringence analysis, residual stress and relaxation analysis, stress-strain analysis, and dynamic mechanical thermal analysis. In comparison with the polyimide film from the poly(amic acid), the films, which were imidized from the photosensitive precursors, exhibited a better molecular order and microstructure; however, they exhibited less molecular orientation in the film plane. Despite the enhancement in both the molecular order and microstructure, the film properties (i.e., mechanical properties, thermal expansion, residual stress, optical properties, dielectric constant, and water sorption) degraded overall due to both the decrease in molecular in-plane orientation and the formation of microvoids caused by the bulky photosensitive group during thermal imidization. That is, on one hand, the PSPI precursor formation provides an advantageous, direct patternability to the BPDA-PDA precursor, and on the other hand, it results in degraded properties to the resulting polyimide film. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
A novel series of colorless and highly organosoluble poly(ether imide)s were prepared from 3,3‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]phthalide dianhydride with various fluorinated aromatic bis(ether amine)s via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by cyclodehydration to produce the polymer films. The poly(ether imide)s showed excellent solubility, with most of them dissoluble at a concentration of 10 wt % in amide polar solvents, in ether‐type solvents, and even in chlorinated solvents. Their films had a cutoff wavelength between 358 and 373 nm, and the yellowness index ranged from 3.1 to 9.5. The glass‐transition temperatures of the poly(ether imide) series were recorded between 237 and 297 °C, the decomposition temperatures at 10% weight loss were all above 494 °C, and the residue was more than 54% at 800 °C in nitrogen. These films showed high tensile strength and also were characterized by higher solubility, lighter color, and lower dielectric constants and moisture absorption than an analogous nonfluorinated polyimide series. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3140–3152, 2006  相似文献   

11.
A novel bis(ether anhydride) monomer, 9,9‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]fluorene dianhydride (4), was synthesized from the nitrodisplacement of 4‐nitrophthalonitrile by the bisphenoxide ion of 9,9‐bis(4‐hydroxyphenyl)fluorene (1), followed by alkaline hydrolysis of the intermediate tetranitrile and dehydration of the resulting tetracarboxylic acid. A series of poly(ether imide)s bearing the fluorenylidene group were prepared from the bis(ether anhydride) 4 with various aromatic diamines 5a–i via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s 6a–i followed by thermal cyclodehydration to the polyimides 7a–i. The intermediate poly(amic acid)s had inherent viscosities in the range of 0.39–1.57 dL/g and afforded flexible and tough films by solution‐casting. Except for those derived from p‐phenylenediamine, m‐phenylenediamine, and benzidine, all other poly(amic acid) films could be thermally transformed into flexible and tough polyimide films. The glass transition temperatures (Tg) of these poly(ether imide)s were recorded between 238–306°C with the help of differential scanning calorimetry (DSC), and the softening temperatures (Ts) determined by thermomechanical analysis (TMA) stayed in the range of 231–301°C. Decomposition temperatures for 10% weight loss all occurred above 540°C in an air or a nitrogen atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1403–1412, 1999  相似文献   

12.
A new aromatic sulfone ether diamine was synthesized by nucleophilic aromatic substitution reaction of 5‐amino‐1‐naphthol with bis(4‐chlorophenyl) sulfone in the presence of potassium carbonate in a polar aprotic solvent. Polycondensation reactions of the obtained diamine with pyromellitic dianhydride (PMDA), benzophenonetetracarboxylic dianhydride (BTDA), and hexafluoroisopropylidene diphthalic anhydride (6FDA) resulted in preparation of thermally stable poly(sulfone ether imide)s. Poly(sulfone ether amide)s also were prepared by reaction of the diamine with terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC). The prepared monomer and polymers were characterized by conventional methods. Physical and mechanical properties of polymers, including thermal stability, thermal behavior, solution viscosity, solubility behavior, and modulus, also were studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1487–1492, 2000  相似文献   

13.
Recently, mesoporous silica was blended with polyimide to develop low dielectric constant (k) materials with improving mechanical and thermal properties of polyimide by utilizing both the nanoporous structure and silica framework. However, even the use of mesoporous silica did not show a significant decrease of k due to the phase segregation in between polyimide and the mesoporous silica materials. In this work, we attempted to prepare polyimide/mesoporous silica hybrid nanocomposites having relatively good phase mixing behavior by utilizing polyimide synthesized from a water soluble poly(amic acid) ammonium salt, which lead to low k up to 2.45. The thermal properties of polyimide were improved by adding mesoporous silicas. For this work, we have fabricated mesoporous silicas through surfactant-templated condensation of tetraethyl orthosilicate (TEOS). Pyromellitic dianhydride (PMDA)-4,4′-oxydianiline (ODA) polyimide was prepared from poly(amic acid) ammonium salt, which had been obtained by incorporating triethylamine (TEA) into PMDA-ODA poly(amic acid) in dimethylacetamide (DMAc), followed by thermal imidization.  相似文献   

14.
Two new poly(ether amide ether imide)s (PEAEIs) were prepared from a new diamine (DA) containing ether, aliphatic, amide, naphthyl and pyridine functional groups that resulted flexible and thermally stable ultimate polymers. The DA was synthesized via two steps, starting from nucleophilic substitution reaction of 1,8‐diamino‐3,6‐dioxaoctane with 6‐chloronicotinoyl chloride in the presence of propylene oxide which, afforded dichloro‐diamide (DCDA) compound. In the second step for the preparation of DA, reaction of DCDA compound with 5‐amino‐1‐naphthol in the presence of K2CO3 was achieved. The new DA was then polycondensed with 2,2'‐bis‐(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride and pyromellitic dianhydride to produce PEAEIs. The precursor, monomer and obtained polymers were entirely characterized by FT‐IR and 1H‐NMR spectroscopy and elemental analysis techniques. The physical properties of the polymers including solubility, thermal behavior, thermal stability, inherent viscosity, morphology and mechanical properties were studied. The new PEAEIs exhibited favorable balance of physical and thermal properties, and their solubility was improved without sacrificing their thermal stability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A diamine containing heterocyclic pyridine and unsymmetrical carbazole substituents, 4‐(9‐ethyl‐3‐carbazole)‐2,6‐bis(4‐aminophenyl)pyridine ( CBAPP ), was prepared for use in the synthesis of poly(pyridine‐imide)s PI‐1–8 by direct polycondensation with dianhydrides in N,N‐dimethylacetamide (DMAc). The poly(pyridine‐imide)s derived from the diamine are highly soluble in solvents such as N‐Methyl‐2‐pyrrolidone (NMP) and DMAc at room temperature. Noncoplanar polyimide (PI‐1) showed excellent solubility, high transparency, and high‐performance mechanical properties. These polymers had relatively high glass transition temperatures and exhibited good thermal stability in both nitrogen (Td10 > 470 °C) and air (Td10 > 450 °C). The PI‐3~5 cannot form flexible and tough films due to the unsymmetrical carbazole moiety, rigid structure, and polar–polar interaction. However, through copolymerization technique these polymers (PI‐6~8) could be enhanced through the solubility, mechanical, and thermal properties. The optical properties included a strong orange fluorescence (540 nm) after protonation with acid. When the HCl concentration was increased, a new absorption band at approximately 350 nm appeared, and the intensity of the fluorescent peak at 380 nm observed in the neutral polymer solution decreased, along with the appearance of the new fluorescent peak at 540 nm. The poly(pyridine‐imide)s presented here showed only slight fluorescence quenching in the presence of methanol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 405–412  相似文献   

16.
聚酰胺酸酯的合成及性能研究   总被引:1,自引:0,他引:1  
围绕刚性主链、高尺寸稳定性聚酰亚胺的制备,对聚酰胺酸酯的合成及酰亚胺化特性进行了研究。将制得的均苯二乙酯二酰氯与醚二胺进行聚合得到聚酰胺酸酯并与传统的预聚体——聚酰胺酸进行比较,得出聚酰胺酸酯性能较好,而酰亚胺化的温度要求较高。共聚中分别与间苯二胺或对苯二胺和醚二胺进行共聚,讨论了不同的二胺在共聚中的影响。  相似文献   

17.
This work focuses on surface silver metallization on a 3,3',4,4'-benzophenonetetracarboxylic dianhydride/4,4'-oxydianiline (BTDA/ODA)-based polyimide matrix via a direct ion-exchange self-metallization technique using a simple silver salt, silver fluoride, as the silver precursor. The method involves performing an ion-exchange reaction of damp-dry poly(amic acid) films in silver aqueous solution to form silver(I)-containing precursor films. Thermal treatment under tension converts the poly(amic acid) into polyimide and simultaneously reduces the silver(I) to silver(0), yielding silver layers with excellent reflectivity and conductivity on both film sides. However, significant property differences were exhibited on the upside and underside surfaces of the metallized films and this has been discussed in detail. The variation of surface properties and surface morphologies during the thermal curing cycle was also investigated. The mechanical and thermal properties of the metallized polyimide films are essentially similar to those of the host polyimide.  相似文献   

18.
A new diamine containing a pyridine heterocyclic group and a naphthalene substituent, 4-(2-naphthyl)-2,6-bis(4-aminophenyl) pyridine (NBAPP), was synthesized with the Chichibabin reaction and used in the preparation of poly(pyridine imide) by direct polycondensation with 4,4′-hexafluoroisopropylidenediphathalic anhydride in N-methyl-2-pyrrolidinone (NMP). The poly(pyridine imide) derived from diamine NBAPP with naphthalene substituents was highly organosoluble: it was soluble in tetrahydrofuran, NMP, N,N-dimethylacetamide (DMAc), N,N-dimethylformamide, and γ-butyrolactone at room temperature and in pyridine, dimethyl sulfoxide, and cyclohexanone upon heating at 70 °C. The poly(pyridine imide) was converted into lightly colored, optically transparent, flexible, and tough polyimide films via casting onto glass from a DMAc solution. This polymer exhibited good thermal stability (temperature of 10% weight loss = 527 °C) in air and high dielectric constants (as high as 4.20 at 1 kHz). The polyimide films had a tensile strength of 102 MPa and a tensile modulus of 1.8 GPa. As for the optical properties, the polymer exhibited UV–vis absorption bands in the region of 223–450 nm and possessed strong green-yellow fluorescence (500 nm) after being protonated with acid. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2367–2374, 2007  相似文献   

19.
Synthesis of high temperature polyimide foams with pore sizes in the nanometer range was developed. Foams were prepared by casting graft copolymers comprising a thermally stable block as the matrix and a thermally labile material as the dispersed phase. The copolyimides as the matrix material were prepared via polycondensation reactions of pyromellitic dianhydride with three new diamines (4BAP, 3BAP, and BAN) through the poly(amic acid) precursors. Functionalized poly(propylene glycol) (PPGBr‐1000 and PPGBr‐2500) as the labile oligomer was prepared via reaction of poly(propylene glycol) monobutyl ether with 2‐bromoacetyl bromide. Graft copolymers were prepared by the reaction of the poly(amic acid)s with these thermally labile constituents. Upon thermal treatment the labile blocks were subsequently removed leaving pores with the size and shape of the original copolymer morphology. The polyimides and foamed polyimides were characterized by some conventional methods including FTIR, H‐NMR, DSC, TGA, SEM, TEM, and dielectric constant. The average pore size of the polyimide nanofoams was in the range of 5–20 nm. The structure–property relationships of the prepared nanofoams were investigated based on the diamine structures and also molecular weights of labile groups. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
We prepared new semiaromatic polyimides from alicyclic dianhydrides and aromatic diamines containing adamantyl and biadamantyl units. Polycondensations were performed in 1‐methyl‐2‐pyrrolidinone at room temperature for 7 h and then 80 °C for 23 h, giving poly(amic acid)s with inherent viscosities up to 0.58 dL/g. Poly(amic acid)s were converted to corresponding poly(imide)s by thermal treatment. Poly(imide)s showed relatively high thermal stability (5% weight loss around 450 °C) and low dielectric constants (2.69–2.79). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 144–150, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号